HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 205 Accepted Submission(s): 109

两个整数n,m(2≤n,m≤100000)
#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<vector>
using namespace std;
typedef long long LL;
const int maxn = 1e5+200;
const int mod = 1e9+7;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson mid+1,R
LL quick(LL x, LL n){
if(n == 0)
return 1;
LL ret = 1;
while(n){
if(n&1)
ret = (ret*x) % mod;
n = n>>1;
x = (x*x) % mod;
}
return ret;
}
LL fac[maxn], inv[maxn];
LL C(LL n, LL m){
if(n == m) return 1;
if(n < m) return 0;
return (fac[n] * inv[n-m]) % mod * inv[m] % mod;
}
int main(){
int n , m;
fac[0] = 1;
for(int i = 1; i <= maxn - 10; i++){
fac[i] = (fac[i-1] * i) % mod;
}
// for(int i = 1; i <= 100100; i++){ //这种比较慢,可以有O(n)的递推
// inv[i] = quick(fac[i] ,(LL)mod-2);
// }
inv[maxn-10] = quick(fac[maxn-10],mod-2);
for(int i = maxn-11; i >= 1; i--){ //递推求解阶乘的逆元
inv[i] = inv[i+1] * (i+1) % mod;
}
while(scanf("%d%d",&n,&m)!=EOF){
if(n > m)
swap(n,m);
n--; m--;
LL ans = 1;
for(int i = 1; i < n; i++){
ans = (ans + (C(n-1,i)*C(m-1,i)) % mod) % mod;
}
printf("%d\n",ans%mod);
} return 0;
}
HDU 5698——瞬间移动——————【逆元求组合数】的更多相关文章
- 牛客小白月赛14 -B (逆元求组合数)
题目链接:https://ac.nowcoder.com/acm/contest/879/B 题意:题目意思就是求ΣC(n,i)pi(MOD+1-p)n-i (k<=i<=n),这里n,i ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- HDU 5698 瞬间移动 数学
瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...
- HDU 5698 瞬间移动
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 5698 瞬间移动(排列组合)
这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...
- HDU 5852 Intersection is not allowed!(LGV定理行列式求组合数)题解
题意:有K个棋子在一个大小为N×N的棋盘.一开始,它们都在棋盘的顶端,它们起始的位置是 (1,a1),(1,a2),...,(1,ak) ,它们的目的地是 (n,b1),(n,b2),...,(n,b ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 求组合数、求逆元、求阶乘 O(n)
在O(n)的时间内求组合数.求逆元.求阶乘.·.· #include <iostream> #include <cstdio> #define ll long long ;// ...
- hdu 2519 求组合数
求组合数 如果求C5 3 就是5*4*3/3*2*1 也就是(5/3)*(4/2)*(3/1) Sample Input5 //T3 2 //C3 25 34 43 68 0 Sample Outpu ...
随机推荐
- mysql中判断记录是否存在方法比较【转】
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入. 我这里总结了判断记录是否存在的常用方法: sql语句:select count(*) from tablename ...
- [Erlang09]Erlang gen_server实现定时器(interval)的几种方法及各自的优缺点?
方法1: %%gen_server:部分call_back function. -define(TIME,1000). init([]) –> erlang:send_after(?TIME,s ...
- 基于 ZKEACMS 的云建站 / 自助建站解决方案
基于ZKEACMS的云建站 / 自助建站解决方案,一站式托管,解决企业建站需求,功能强大,高度自定义.用户只需在界面上输入一些基本信息,选择相应的主题 / 网站模板,然后就可以快速创建一个独一无二的网 ...
- docker 进入容器
- BF、kmp算法
第七周 字符串匹配 BF算法,kmp算法 BF:时间复杂度为 O(m*n) int Index_BF(SString S, SString T, int pos) { ; while (i <= ...
- emacs 考场配置
先存在这里,免得等回来乱搞的时候把自己的配置搞丢了qwq (custom-set-variables '(custom-enabled-themes (quote (tango-dark)))) (c ...
- loj#6261. 一个人的高三楼(NTT+组合数学)
题面 传送门 题解 统计\(k\)阶前缀和,方法和这题一样 然后这里\(n\)比较大,那么把之前的柿子改写成 \[s_{j,k}=\sum_{i=1}^ja_i{j-i+k-1\choose j-i} ...
- 关于logstash-out-mongodb插件说明
从kafka获取数据,存到mongodb中.适合空间查询geo_point设置.配置文件如下: input { kafka { type => "test" a ...
- P4097 [HEOI2013]Segment 李超线段树
$ \color{#0066ff}{ 题目描述 }$ 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 给定一个数 k,询问与直线 x = k 相交的线 ...
- vim编辑器基本操作及文件权限,sudo命令等介绍
一:vim 操作命令,在命令模式下操作 pageup 往上翻页 pagedown 往下翻页 H 移动到屏幕首行 gg 移动光标到文档的首行 前面加数字n表示移动到n行内容 G 移动到文档最后一行/查找 ...