给出一个n,求1-n这n个数,同n的最小公倍数的和。
例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果很大,输出Mod 1000000007的结果。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:T个数A[i](A[i] <= 10^9)
Output
共T行,输出对应的最小公倍数之和
Input示例
3
5
6
9
Output示例
55
66
279
————————————————————————
公式推导
不过这里 最后枚举约数的时候 因为前面已经进行过质因数分解 所以可以直接枚举各个因数的次数就可以了
这样比直接枚举快很多(不会T QAQ
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int M=1e5+,mod=1e9+,P=(mod+)/,mx=4e4+;
using std::max;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int T,n,p[M],cnt,h[M],pri[mx],xp;
LL v,ans,vis[mx];
LL ly,yy;
int F(int x){for(int i=;i<=cnt;i++)if(x%p[i]==) x=x/p[i]*(p[i]-); return x;}
LL inv(int a,int b,LL&x,LL&y){
if(!b){x=,y=;return a;}
LL g=inv(b,a%b,y,x);
y=(y-a/b*x)%mod;
return g;
}
void dfs(int step,LL x){
if(step==cnt+){
if(x!=){
inv(n/x,mod,ly,yy); ly=(ly+mod)%mod;
ans=(ans+1LL*F(x)*n%mod*P%mod*ly%mod)%mod;
}
return ;
}
LL sum=;
for(int i=;i<=h[step];i++){
sum=(!i?:sum*p[step]);
dfs(step+,x*sum);
}
}
int main(){
T=read();
for(int i=;i<=mx;i++)if(!vis[i]){
pri[++xp]=i; vis[i]=;
for(int j=*i;j<=mx;j+=i) vis[j]=;
}
while(T--){
cnt=; ans=;
n=read(); v=n;
for(LL x=;pri[x]*pri[x]<=v;x++)if(v%pri[x]==){
p[++cnt]=pri[x]; h[cnt]=;
while(v%pri[x]==) v/=pri[x],h[cnt]++;
}
if(v!=) p[++cnt]=v,h[cnt]=;
dfs(,); printf("%lld\n",(n*ans+n)%mod);
}
return ;
}

 

51nod 1363 最小公倍数之和 ——欧拉函数的更多相关文章

  1. 51nod - 1363 - 最小公倍数之和 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...

  2. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  3. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  4. 【51Nod 1363】最小公倍数之和(欧拉函数)

    题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...

  5. 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举

    1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...

  6. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  7. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  8. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  9. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. Windows 7中安装Solr7

    最新忙里偷闲,研究一下了Lucene.Net,发现操作比较繁琐,同比相似的功能,感觉Solr比较简单,容易使用.不过由于Solr使用的是Java的环境,对于.Net开发的人员来说,还是比较陌生,搭配环 ...

  2. Agile.Net 组件式开发平台 - 驱动开发示例

    首先讲一下概念,此驱动非彼驱动.在Agle.Net中我们将组件规划成两种类型,一种是基于业务的窗体组件,一种是提供扩展功能的驱动组件. 打个比方例如一般系统中需要提供身份证读卡功能,然而市面上有很多种 ...

  3. WCF面试精典题汇总

    1.WCF接口中的参数改名问题 在写WCF Web Service接口的时候,如果你对接口的参数名做改动的时候,一定要记住Update所有应用该Web service的客户端的Referrence,否 ...

  4. Dojo初探

    Dojo 是一个由 Dojo 基金会开发的 Javascript 工具包, 据说受到 IBM 的永久支持,其包括四个部分: dojo, dijit, dojox, util dojo: 有时也被称作 ...

  5. 第25天:js-封装函数-淘宝鼠标展示

    封装函数: 1.函数形参相当于变量,不能加引号. 2.实参要和形参一一对应. 案例:鼠标移到小图上,背景展示相应放大的图片.代码如下: <!DOCTYPE html> <html l ...

  6. winform中文本框添加拖拽功能

    对一个文本框添加拖拽功能: private void txtFolder_DragEnter(object sender, DragEventArgs e) { if (e.Data.GetDataP ...

  7. BZOJ 1789 Y形项链(思维)

    这题类似于1787,最后的节点一定是两点的LCA,这里也就是两个字符串的最长公共前缀. # include <cstdio> # include <cstring> # inc ...

  8. 【bzoj2272】[Usaco2011 Feb]Cowlphabet 奶牛文字 dp

    题目描述 Like all bovines, Farmer John's cows speak the peculiar 'Cow'language. Like so many languages, ...

  9. Unable to open connection to "Microsoft SQL Server, provider V1.0.5000.0 in framework

    解决办法:1 以管理员身份登陆2 找到ORACLE_HOME文件夹(D:\oracle\ora92),点右键,选属性——安全,在组或用户栏中选"Authenticated Users&quo ...

  10. [洛谷P2447][SDOI2010]外星千足虫

    题目大意:有$n$个数,每个数为$0$或$1$,给你其中一些关系,一个关系形如其中几个数的异或和是多少,问最少知道前几个关系就可以得出每个数是什么,并输出每个数 题解:异或方程组,和高斯消元差不多,就 ...