给出一个n,求1-n这n个数,同n的最小公倍数的和。
例如:n = 6,1,2,3,4,5,6 同6的最小公倍数分别为6,6,6,12,30,6,加在一起 = 66。

由于结果很大,输出Mod 1000000007的结果。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:T个数A[i](A[i] <= 10^9)
Output
共T行,输出对应的最小公倍数之和
Input示例
3
5
6
9
Output示例
55
66
279
————————————————————————
公式推导
不过这里 最后枚举约数的时候 因为前面已经进行过质因数分解 所以可以直接枚举各个因数的次数就可以了
这样比直接枚举快很多(不会T QAQ
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int M=1e5+,mod=1e9+,P=(mod+)/,mx=4e4+;
using std::max;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int T,n,p[M],cnt,h[M],pri[mx],xp;
LL v,ans,vis[mx];
LL ly,yy;
int F(int x){for(int i=;i<=cnt;i++)if(x%p[i]==) x=x/p[i]*(p[i]-); return x;}
LL inv(int a,int b,LL&x,LL&y){
if(!b){x=,y=;return a;}
LL g=inv(b,a%b,y,x);
y=(y-a/b*x)%mod;
return g;
}
void dfs(int step,LL x){
if(step==cnt+){
if(x!=){
inv(n/x,mod,ly,yy); ly=(ly+mod)%mod;
ans=(ans+1LL*F(x)*n%mod*P%mod*ly%mod)%mod;
}
return ;
}
LL sum=;
for(int i=;i<=h[step];i++){
sum=(!i?:sum*p[step]);
dfs(step+,x*sum);
}
}
int main(){
T=read();
for(int i=;i<=mx;i++)if(!vis[i]){
pri[++xp]=i; vis[i]=;
for(int j=*i;j<=mx;j+=i) vis[j]=;
}
while(T--){
cnt=; ans=;
n=read(); v=n;
for(LL x=;pri[x]*pri[x]<=v;x++)if(v%pri[x]==){
p[++cnt]=pri[x]; h[cnt]=;
while(v%pri[x]==) v/=pri[x],h[cnt]++;
}
if(v!=) p[++cnt]=v,h[cnt]=;
dfs(,); printf("%lld\n",(n*ans+n)%mod);
}
return ;
}

 

51nod 1363 最小公倍数之和 ——欧拉函数的更多相关文章

  1. 51nod - 1363 - 最小公倍数之和 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...

  2. 51nod 1040 最大公约数之和 欧拉函数

    1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...

  3. 51nod 1227 平均最小公倍数【欧拉函数+杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  4. 【51Nod 1363】最小公倍数之和(欧拉函数)

    题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...

  5. 51nod 1363 最小公倍数的和 欧拉函数+二进制枚举

    1363 最小公倍数之和 题目来源: SPOJ 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 给出一个n,求1-n这n个数,同n的最小公倍数的和.例如:n = 6,1,2,3 ...

  6. 51nod 1040 最大公约数之和(欧拉函数)

    1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...

  7. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  8. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  9. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

随机推荐

  1. lintcode-6-合并排序数组

    合并排序数组 合并两个排序的整数数组A和B变成一个新的数组. 样例 给出A=[1,2,3,4],B=[2,4,5,6],返回 [1,2,2,3,4,4,5,6] 挑战 你能否优化你的算法,如果其中一个 ...

  2. linux解压zip

    用 unzip 的先安装 yum install -y unzip #unzip file.zip -d /root  -d指解压路径 ,不写的话默认当前目录

  3. [CLR via C#]值类型的装箱和拆箱

    我们先来看一个示例代码: namespace ConsoleApplication1 { class Program { static void Main(string[] args) { Array ...

  4. BZOJ 1597 土地购买(斜率优化DP)

    如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买 ...

  5. 【bzoj4550】小奇的博弈 博弈论+dp

    题目描述 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色.最左边是白色棋子,最右边 是黑色棋子,相邻的棋子颜色不同.   小奇可以移动白色棋子,提比可以移动黑色的棋子, ...

  6. Python 静态方法、类方法和属性方法

    Python 静态方法.类方法和属性方法 静态方法(staticmethod) staticmethod不与类或者对象绑定,类和实例对象都可以调用,没有自动传值效果,Python内置函数staticm ...

  7. 【刷题】洛谷 P4329 [COCI2006-2007#1] Bond

    题意翻译 有 \(n\) 个人去执行 \(n\) 个任务,每个人执行每个任务有不同的成功率,每个人只能执行一个任务,求所有任务都执行的总的成功率. 输入第一行,一个整数 \(n\) ( \(1\leq ...

  8. [COGS2652]秘术「天文密葬法」

    description 题面 给个树,第\(i\)个点有两个权值\(a_i\)和\(b_i\),现在求一条长度为\(m\)的路径,使得\(\frac{\sum a_i}{\sum b_i}\)最小 d ...

  9. 【hackerrank】Week of Code 26

    在jxzz上发现的一个做题网站,每周都有训练题,题目质量……前三题比较水,后面好神啊,而且类型差不多,这周似乎是计数专题…… Army Game 然后给出n*m,问需要多少个小红点能全部占领 解法:乘 ...

  10. Android <Android应用开发实战> 学习总结杂项

    1.系统相册默认保存地址:android.os.Environment.getExternalStorageDirectory().getAbsolutePath() + "/DCIM/Ca ...