UVA 11440 Help Tomisu
https://vjudge.net/problem/UVA-11440
题意:
求2——n! 之间有多少个整数x,满足x的所有素因子都大于m
保证m<=n
x的所有素因子都大于m 等价于 x和m!互质
因为m<=n,所以n!是 m!的整数倍
所以只需要求出m!以内和m!互质的个数
答案再乘n!/ m! 即可
关键是求phifac(i)
考虑递推
phi(n)= n*(1-1/p1)*(1-1/p2)……
如果i是质数,那么phifac(i)比 phifac(i-1)多乘一个n*(1-1/n)
否则,phifac(i)比 phifac(i-1)多乘一个n
原理同阶乘质因数分解
#include<cstdio>
#define N 10000001
#define mod 100000007
using namespace std;
int cnt,p[N],phi[N];
long long phifac[N];
bool v[N];
int main()
{
phi[]=;
for(int i=;i<N;i++)
{
if(!v[i])
{
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;j<=cnt;j++)
{
if(i*p[j]>=N) break;
v[i*p[j]]=true;
if(i%p[j]) phi[i*p[j]]=phi[i]*(p[j]-);
else
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
}
}
int n,m; long long ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(!n) return ;
ans=;
phifac[]=;
for(int i=;i<=m;i++)
if(!v[i]) phifac[i]=phifac[i-]*(i-)%mod;
else phifac[i]=phifac[i-]*i%mod;
ans=phifac[m];
for(int i=m+;i<=n;i++) ans=ans*i%mod;
printf("%lld\n",ans-);
}
}
UVA 11440 Help Tomisu的更多相关文章
- uva 11440 - Help Tomisu(欧拉功能)
题目链接:uva 11440 - Help Tomisu 题目大意:给定n和m,求从2~n.中的数x.要求x的质因子均大于m.问说x有多少个.答案模上1e9+7. 解题思路: (1)n!=k∗m!(n ...
- UVa 11440 - Help Tomisu(欧拉函数 + 问题转换)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 11440 Help Tomisu (数论欧拉函数)
题意:给一个 n,m,统计 2 和 n!之间有多少个整数x,使得x的所有素因子都大于M. 析:首先我们能知道的是 所有素数因子都大于 m 造价于 和m!互质,然后能得到 gcd(k mod m!, m ...
- Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数。
/** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满 ...
- UVa 11440 (欧拉函数) Help Tomisu
题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- UVA 11404 Palindromic Subsequence[DP LCS 打印]
UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...
随机推荐
- (转载)IE8+兼容经验小结
本文分享下我在项目中积累的IE8+兼容性问题的解决方法.根据我的实践经验,如果你在写HTML/CSS时候是按照W3C推荐的方式写的,然后下面的几点都关注过,那么基本上很大一部分IE8+兼容性问题都OK ...
- 《剑指Offer》题五十一~题六十
五十一.数组中的逆序对 题目:在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数.例如,在数组{7, 5, 6, 4}中,一共存 ...
- Mishka and Contest(模拟水题)
Mishka started participating in a programming contest. There are nn problems in the contest. Mishka' ...
- iOS- Swift实现UITableView的常见操作
1.前言 Swift在这就不多介绍了,想必大家都已皆知. 离Swift面世也过了有一个多月的时间. 在闲暇时间我用Swift实现了UITableView的一些常见操作. 基本都是可以用上的,今天在 ...
- iOS开发Interface Builder技巧
1.使view的Size与view中的Content相适应:选中任意的一个view,然后Editor->Size to Fit Content,或者简单的按 ⌘=接着就会按照下面的规则对选中vi ...
- JSP在页面加载时调用servlet的方法
方法:先在JS里面写一个调用servlet的事件(可以利用ajax),然后利用<body>标签的onload调用这个事件. 代码如下: jsp文件代码如下: <%@ page lan ...
- new关键字 、this关键字、base关键字
使用new,所做的三件事: 1. (类是引用对象,引用对象是在堆中开辟空间)在堆中开辟空间 2. 在开辟的堆空间中创建对象 3. 调用对象的构建函数 4. 隐藏父类成员:子类的成员可以与隐藏从父类继承 ...
- JVM(二)GC
GC简介 Java堆内存 在运行时,java的实例被存放在堆内存区域.当一个对象不在被引用,满足条件就会从堆内存移除并且内存空间被回收.堆内存由三个主要区域 1.新生代 Eden空间(任何实例 ...
- Redis集群分布(Windows版)
Redis系列 作者Mr.Chen,转载请注明博客出处:http://www.cnblogs.com/cjh-notes/ 第一步:下载安装redis windows版的下载地址:https://gi ...
- window service 创建
1:vs中创建一个 window servece 2.右键 添加安装程序 3.更改属性视图中的Account属性为LocalService(本地服务) 更改ServiceName为你自己的服务名称 ...