【SRM】518 Nim
题意
\(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模。
分析
容易得到\(f(i, k) = \sum_{j=0}^{n-1} f(i-1, j) f(i-1, k^j), f(1, i(2 \le i \le L))=1\),其中\(n=min(2^i, 2^i > L)\)。发现其实这就是操作为\(xor\)的卷积。于是用鬼畜的fwt做就行了。
题解
然后fwt+快速幂即可。
// BEGIN CUT HERE
// END CUT HERE
#line 5 "Nim.cpp"
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int mo=1e9+7, N=100005, two=(1e9+8)/2;
void fwt(int *a, int l, int r, int f) {
if(r-l==1) {
return;
}
int mid=(l+r)>>1;
if(!f) {
fwt(a, l, mid, f);
fwt(a, mid, r, f);
}
int g=f?two:1;
for(int i=l, m=(r-l)>>1; i<mid; ++i) {
int x=a[i], y=a[i+m];
a[i]=(ll)(x+y)%mo*g%mo;
a[i+m]=(ll)(x-y+mo)%mo*g%mo;
}
if(f) {
fwt(a, l, mid, f);
fwt(a, mid, r, f);
}
}
int ipow(int a, int b) {
int x=1;
for(; b; b>>=1, a=(ll)a*a%mo) {
if(b&1) {
x=(ll)x*a%mo;
}
}
return x;
}
int a[N];
class Nim {
public:
int count(int K, int L) {
int len=1;
for(; len<=L; len<<=1);
memset(a, 0, sizeof(int)*len);
for(int i=2; i<=L; ++i) {
a[i]=1;
}
for(int i=2; i<=L; ++i) {
if(a[i]) {
for(int j=i+i; j<=L; j+=i) {
a[j]=0;
}
}
}
fwt(a, 0, len, 0);
for(int i=0; i<len; ++i) {
a[i]=ipow(a[i], K);
}
fwt(a, 0, len, 1);
return a[0];
}
// BEGIN CUT HERE
public:
void run_test(int Case) { if ((Case == -1) || (Case == 0)) test_case_0(); if ((Case == -1) || (Case == 1)) test_case_1(); if ((Case == -1) || (Case == 2)) test_case_2(); if ((Case == -1) || (Case == 3)) test_case_3(); }
private:
template <typename T> string print_array(const vector<T> &V) { ostringstream os; os << "{ "; for (typename vector<T>::const_iterator iter = V.begin(); iter != V.end(); ++iter) os << '\"' << *iter << "\","; os << " }"; return os.str(); }
void verify_case(int Case, const int &Expected, const int &Received) { cerr << "Test Case #" << Case << "..."; if (Expected == Received) cerr << "PASSED" << endl; else { cerr << "FAILED" << endl; cerr << "\tExpected: \"" << Expected << '\"' << endl; cerr << "\tReceived: \"" << Received << '\"' << endl; } }
void test_case_0() { int Arg0 = 3; int Arg1 = 7; int Arg2 = 6; verify_case(0, Arg2, count(Arg0, Arg1)); }
void test_case_1() { int Arg0 = 4; int Arg1 = 13; int Arg2 = 120; verify_case(1, Arg2, count(Arg0, Arg1)); }
void test_case_2() { int Arg0 = 10; int Arg1 = 100; int Arg2 = 294844622; verify_case(2, Arg2, count(Arg0, Arg1)); }
void test_case_3() { int Arg0 = 123456789; int Arg1 = 12345; int Arg2 = 235511047; verify_case(3, Arg2, count(Arg0, Arg1)); }
// END CUT HERE
};
// BEGIN CUT HERE
int main() {
Nim ___test;
___test.run_test(-1);
return 0;
}
// END CUT HERE
【SRM】518 Nim的更多相关文章
- 【CF662A】Gambling Nim 线性基
[CF662A]Gambling Nim 题意:n长卡牌,第i张卡牌正面的数字是$a_i$,反面的数字是$b_i$,每张卡牌等概率为正面朝上或反面朝上.现在Alice和Bob要用每张卡牌朝上的数字玩N ...
- 【BZOJ3105】新Nim游戏(线性基)
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...
- 【LeetCode】518. Coin Change 2 解题报告(Python)
[LeetCode]518. Coin Change 2 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目 ...
- 【Leetcode】292. Nim Game
problem 292. Nim Game solution class Solution { public: bool canWinNim(int n) { ; } }; 来generalize一下 ...
- 【Leetcode】292. Nim游戏
题目链接:https://leetcode-cn.com/problems/nim-game/description/ 您和您的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 ...
- 【BZOJ3105】【CQOI2013】新Nim游戏
Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴 ...
- 【bzoj3105】新Nim游戏
Portal--> bzoj3105 新Nim游戏 Solution 转化一下问题 首先看一下原来的Nim游戏,先手必胜的条件是:每堆数量的异或和不为\(0\) 所以在新的游戏中,如果要保证自己 ...
- 【bzoj4589】Hard Nim FWT
题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走, ...
- 【LeetCode】292. Nim Game 解题报告(Java & Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
随机推荐
- 本地数据Store。Cookie,Session,Cache的理解。Timer类主要用于定时性、周期性任务 的触发。刷新Store,Panel
本地数据Store var monthStore = Ext.create('Ext.data.Store', { storeId : 'monthStore', autoLoad : false, ...
- 初次启动app校验的活动图和分析
初次启动活动图 version 1 version 2 version 3 根据上图的活动图分析,可能存在较严重的问题: 主线程中如果发现是sdcard的url,则可能进行重命名 FirstEnter ...
- Java 动态代理机制详解
在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们不但要知道怎么通过AOP来满足的 ...
- linux git实现代理
说明 Git 目前支持的三种协议 git://.ssh:// 和 http://,使用git:// 和 http://比较多,ssh://忽略,FQ后可以直接加快同步google和github代码. ...
- highcharts使用笔记
1.legend取消点击事件: 饼图:plotOptions.pie.point.events.legendItemClick = function() {return false;} 其他,如:pl ...
- IIS 配置MVC项目路由中以api结尾的接口
公司的接口,前端框架是MVC,路由里面对接口配置的路径是以api结尾的,结果之间在iis上访问不了,研究了半天成功了,整理下,以免下次再忘. 路由配置RouteConfig routes.MapRou ...
- extern
gcc编译器编译程序有四个阶段,预处理.编译.汇编.链接.预处理阶段会将源代码中的包含的头文件如stdio.h编译进来:编译阶段,gcc首先要检查代码的规范性.是否有语法错误等,以确定代码的实际要做的 ...
- 安卓真机调试 出现Installation error: INSTALL_FAILED_UPDATE_INCOMPATIBLE....
[2016-08-20 14:38:39 - hybrid-android] Installation error: INSTALL_FAILED_UPDATE_INCOMPATIBLE[2016-0 ...
- CMS系统存储路径
CMS系统特点:前后端分离 index.html 首页文件index.php 管理后台的页面 api文件夹: 提供的接口 caches文件夹: 缓存文件 html文件夹: 生成的静态页面 phpcm ...
- 书柜的尺寸(bzoj 1933)
Description Tom不喜欢那种一字长龙式的大书架,他只想要一个小书柜来存放他的系列工具书.Tom打算把书柜放在桌子的后面,这样需要查书的时候就可以不用起身离开了.显然,这种书柜不能太大,To ...