【题意】

  给出26个大写字母组成 字符串B问是否存在一个置换A使得A^2 = B

【分析】

   置换前面已经说了,做了这题之后有了更深的了解。

   再说说置换群。

     首先是群。

  

  置换群的元素是置换,运算时是置换的连接。

  前面已经说了,每个置换都可以写成互不相交的循环的乘积。

   

  然后分析一下这题。

   假设A置换是(a1,a2,a3)(b1,b2,b3,b4)   【这里用循环表示

   那么A*A=(a1,a2,a3)(b1,b2,b3,b4)(a1,a2,a3)(b1,b2,b3,b4)

   不相交的循环满足交换律,so

   A*A=(a1,a2,a3)(a1,a2,a3)(b1,b2,b3,b4)(b1,b2,b3,b4)

   满足结合律 A*A=( (a1,a2,a3)(a1,a2,a3)) * ((b1,b2,b3,b4)(b1,b2,b3,b4))

  (a1,a2,a3)(a1,a2,a3)=(a1,a3,a2)

  (b1,b2,b3,b4)(b1,b2,b3,b4)=(b1,b3)(b2,b4)

  分析到这里可以考虑B了,先把B分成若干个不相交的循环,对于长度为n奇循环来说,他可以是两个长度为n的循环乘出来的,也可能是两个长度为2n的循环分裂成的。

  而对于长度为n偶循环来说,他只能是两个长度为2n的循环分裂成的。所以偶循环必须要长度相等的两两配对。

  也就是说如果有奇数个长度相同的偶循环,就输出NO,否则一定可以找到一个合法的A。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 30 int a[Maxn],ans[Maxn];
bool vis[Maxn]; char s[Maxn]; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s",s);
for(int i=;i<=;i++) a[i+]=s[i]-'A'+;
memset(vis,,sizeof(vis));
memset(ans,,sizeof(ans));
for(int i=;i<=;i++) if(!vis[i])
{
int cnt=,x=i;
while(vis[x]==)
{
cnt++;
vis[x]=;
x=a[x];
}
ans[cnt]++;
}
bool ok=;
for(int i=;i<=;i+=)
{
if(ans[i]%==) ok=;
}
if(ok) printf("Yes\n");
else printf("No\n");
}
return ;
}

好机智哦,这样一看也不是很难啦。。

代码也很简单。。

2017-01-11 16:49:20

【LA 3641】 Leonardo's Notebook (置换群)的更多相关文章

  1. LA 3641 Leonardo的笔记本 & UVA 11077 排列统计

    LA 3641 Leonardo的笔记本 题目 给出26个大写字母的置换B,问是否存在要给置换A,使得 \(A^2 = B\) 分析 将A分解为几个循环,可以观察经过乘积运算得到\(A^2\)后,循环 ...

  2. poj 3128 Leonardo's Notebook (置换群的整幂运算)

    题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...

  3. POJ 3128 Leonardo's Notebook [置换群]

    传送门 题意:26个大写字母的置换$B$,是否存在置换$A$满足$A^2=B$ $A^2$,就是在循环中一下子走两步 容易发现,长度$n$为奇数的循环走两步还是$n$次回到原点 $n$为偶数的话是$\ ...

  4. UVaLive 3641 Leonardo's Notebook (置换)

    题意:给定一个置换 B 问是否则存在一个置换 A ,使用 A^2 = B. 析:可以自己画一画,假设 A = (a1, a2, a3)(b1, b2, b3, b4),那么 A^2 = (a1, a2 ...

  5. hrbust oj 1536 Leonardo's Notebook 置换群问题

    题目大意: 给出一个A~Z的置换G,问能否找到一个A~Z的置换G' 能够用来表示为 G = G'*G' 由定理: 任意一个长为 L 的置换的k次幂,都会把自己的每一个循环节分裂成gcd(L, K)份, ...

  6. [Poj3128]Leonardo's Notebook

    [Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...

  7. POJ 3128 Leonardo's Notebook (置换)

    Leonardo's Notebook Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2324   Accepted: 98 ...

  8. LA 3641 (置换 循环的分解) Leonardo's Notebook

    给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两 ...

  9. Leonardo's Notebook UVALive - 3641(置换)

    题意: 给出26个大写字母的置换B,问是否存在一个置换A,使得A2 = B 解析: 两个长度为n的相同循环相乘,1.当n为奇数时结果也是一个长度为n的循环:2. 当n为偶数时分裂为两个长度为n/2 ( ...

随机推荐

  1. 【BZOJ4236】JOIOJI [DP]

    JOIOJI Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description JOIOJI桑是JOI君的叔叔 ...

  2. codeforces contest 864 problemD

    Ivan has an array consisting of n elements. Each of the elements is an integer from 1 to n. Recently ...

  3. 对vue中 默认的 config/index.js:配置的详细理解 -【以及webpack配置的理解】-config配置的目的都是为了服务webpack的配置,给不同的编译条件提供配置

    当我们需要和后台分离部署的时候,必须配置config/index.js: 用vue-cli 自动构建的目录里面  (环境变量及其基本变量的配置) var path = require('path') ...

  4. js_同步和异步

    刚开始写js那会,对这一块是知之甚少,太多太多的知识不足,致使做什么都很艰难.现在工作也有段时间了,知识也有了点积累, 写点什么分享一下. 同步和异步?这个问题是在使用ajax请求后台数据的时候出现的 ...

  5. Coursera在线学习---第十节.大规模机器学习(Large Scale Machine Learning)

    一.如何学习大规模数据集? 在训练样本集很大的情况下,我们可以先取一小部分样本学习模型,比如m=1000,然后画出对应的学习曲线.如果根据学习曲线发现模型属于高偏差,则应在现有样本上继续调整模型,具体 ...

  6. Python自动化运维 - Django(二)Ajax基础 - 自定义分页

    Ajax基础 AJAX 不是新的编程语言,而是一种使用现有标准的新方法. AJAX 是与服务器交换数据并更新部分网页的艺术,在不重新加载整个页面的情况下. 什么是Ajax AJAX = 异步 Java ...

  7. Python阶段复习 - part 3 - Python函数

    利用函数打印9*9乘法表 def cheng(num): for i in range(1,num+1): for j in range(1,i+1): print('{0} * {1} = {2}' ...

  8. 【Python学习笔记】Coursera课程《Python Data Structures》 密歇根大学 Charles Severance——Week6 Tuple课堂笔记

    Coursera课程<Python Data Structures> 密歇根大学 Charles Severance Week6 Tuple 10 Tuples 10.1 Tuples A ...

  9. 下载 LFS所需要的源码包的脚本程序及检验方法

    下载 LFS所需要的源码包的脚本程序及检验方法 http://blog.csdn.net/yygydjkthh/article/details/45315143

  10. [转载]循规蹈矩:快速读懂SQL执行计划的套路与工具

    作者介绍 梁敬彬,福富研究院副理事长.公司唯一四星级内训师,国内一线知名数据库专家,在数据库优化和培训领域有着丰富的经验.多次应邀担任国内外数据库大会的演讲嘉宾,在业界有着广泛的影响力.著有多本畅销书 ...