1.cv2.Sobel(src, ddepth, dx, dy, ksize)  进行sobel算子计算

参数说明:src表示当前图片,ddepth表示图片深度,这里使用cv2.CV_64F使得结果可以是负值, dx表示x轴方向,dy表示y轴方向, ksize表示移动方框的大小

2.cv2.convertScalerAbs(src)  将像素点进行绝对值计算

参数说明: src表示当前图片

sobel算子:分为x轴方向和y轴方向上的,x轴方向上的算子如图中的Gx,将sober算子在图中进行平移,当前位置的像素值等于sobel算子与(当前位置与周边位置8个点)进行对应位置相乘并相加操作,作为当前位置的像素点,y轴方向的算子如Gy, 对于x轴方向上,即左右两边的比较,

计算方程为:x轴: p3 - p1 + 2 * p6 - 2 * p4 + p9 - p7, 右边的像素值减去左边的像素值

代码:

第一步:载入原始图片

第二步:使用cv2.Sobel(src, cv2.CV_64F, 1, 0, ksize=3)  对x轴方向进行sobel算子相乘操作

第三步:由于会出现负值的情况,因此使用cv2.convertScalerAbs() 转换为绝对值的形式

第四步:计算y轴方向上的sobel算子

第五步:使用cv2.addWeighted 将x轴方向的sobel算子的结果和y轴方向上的sobel算子的结果结合

第六步:使用cv2.Sobel(src, cv2.CV_64F, 1, 1, ksize=3) 直接获得x轴和y轴方向上的sobel算子结合

第七步:对这两个步骤获得的sobel算子作图

import cv2
import numpy as np # 第一步:加载图片
img = cv2.imread('pie.png')
cv2.imshow('original', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 第二步:对x轴方向上进行sobel算子相乘操作
x_sobel = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
cv2.imshow('x_sobel', x_sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

画图时的负值,使用0来进行表示,因此右侧是黑色的

# 第三步:因为右侧像素减去左边像素,存在负值的情况,因此使用cv2.convertScaleAbs取绝对值操作
x_sobel = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
x_sobel = cv2.convertScaleAbs(x_sobel)
cv2.imshow('x_sobel', x_sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 第四步:计算y轴的sobel算子
y_sobel = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
y_sobel = cv2.convertScaleAbs(y_sobel)
cv2.imshow('y_sobel', y_sobel)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 第五步:并使用cv2.addweighted进行合并
xy_sobel = cv2.addWeighted(x_sobel, 0.5, y_sobel, 0.5, 0) # 第六步: 直接使用cv2.sobel 进行计算
xy_sobel_direct = cv2.Sobel(img, cv2.CV_64F, 1, 1, ksize=3) # 第七步:画图比较分步合并和一步到位的结果差异
cv2.imshow('imgs', np.hstack((xy_sobel, xy_sobel_direct)))
cv2.waitKey(0)
cv2.destroyAllWindows()

从图中我们可以看出x和y轴各自求,再做合并比直接求得的结果,轮廓更加的明显

机器学习进阶-图像梯度运算-Sobel算子 1. cv2.Sobel(使用Sobel算子进行计算) 2. cv2.convertScalerAbs(将像素点进行绝对值的计算)的更多相关文章

  1. 机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)

    1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_6 ...

  2. 机器学习进阶-图像形态学操作-梯度运算 cv2.GRADIENT(梯度运算-膨胀图像-腐蚀后的图像)

    1.op = cv2.GRADIENT 用于梯度运算-膨胀图像-腐蚀后的图像 梯度运算:表示的是将膨胀以后的图像 - 腐蚀后的图像,获得了最终的边缘轮廓 代码: 第一步:读取pie图片 第二步:进行腐 ...

  3. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  4. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  5. 机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)

    1.cv2.pyrDown(src)  对图片做向下采样操作,通常也可以做模糊化处理 参数说明:src表示输入的图片 2.cv2.pyrUp(src) 对图片做向上采样操作 参数说明:src表示输入的 ...

  6. 机器学习进阶-图像形态学操作-膨胀操作 1.cv2.dilate(进行膨胀操作)

    1.cv2.dilate(src, kernel, iteration) 参数说明: src表示输入的图片, kernel表示方框的大小, iteration表示迭代的次数 膨胀操作原理:存在一个ke ...

  7. 机器学习进阶-图像形态学操作-腐蚀操作 1.cv2.erode(进行腐蚀操作)

    1.cv2.erode(src, kernel, iteration) 参数说明:src表示的是输入图片,kernel表示的是方框的大小,iteration表示迭代的次数 腐蚀操作原理:存在一个ker ...

  8. 机器学习进阶-图像基本操作-图像数据读取 1.cv2.imread(图片读入) 2.cv2.imshow(图片展示) 3.cv2.waitKey(图片停留的时间) 4.cv2.destroyAllWindows(清除所有的方框界面) 5.cv2.imwrite(对图片进行保存)

    1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE)  # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为 ...

  9. 机器学习进阶-图像形态学变化-礼帽与黑帽 1.cv2.TOPHAT(礼帽-原始图片-开运算后图片) 2.cv2.BLACKHAT(黑帽 闭运算-原始图片)

    1.op = cv2.TOPHAT  礼帽:原始图片-开运算后的图片 2. op=cv2.BLACKHAT 黑帽: 闭运算后的图片-原始图片 礼帽:表示的是原始图像-开运算(先腐蚀再膨胀)以后的图像 ...

随机推荐

  1. Mongodb安装超长等待

    最近安装了一下mongodb最新版3.6下载各个版本安装都是停在installing MongoDB Compass位置,网上看到说可以等段时间之类的发现等了1个晚上居然还没成功,取消安装也不行. 于 ...

  2. 量化交易(Quantitative Trading)

    什么是量化交易 量化交易是指借助现代统计学和数学的方法,利用计算机技术来进行交易的证券投资方式.量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律 ...

  3. Python——字符串2.0(实验)(python programming)

    直接打s,是程序员看到的:打print(),是用户看到的 列表 ] #列表索引,与数组唯一不同:等号左端可修改 转载自:https://www.cnblogs.com/wwwwwei/p/104816 ...

  4. Java学习——多线程例子:银行

    package cys; public class Example9_3 { public static void main(String[] args) { // TODO Auto-generat ...

  5. 开发框架-Web-.Net:NFine

    ylbtech-开发框架-Web-.Net:NFine 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:htt ...

  6. Oracle空查询删除

           

  7. MaidSafe区块链项目白皮书解读

    MaidSafe.net宣布项目SAFE到社区 1. 介绍 现有的互联网基础设施越来越难以应付超过24亿互联网用户的需求,这个数字在2017年预计将增长到36亿.今天的架构中,中央中介(服务器)存储并 ...

  8. Socket拆包和解包

    对于基于TCP开发的通讯程序,有个很重要的问题需要解决,就是封包和拆包.下面就针对这个问题谈谈我的想法,抛砖引玉.若有不对,不妥之处,恳求大家指正.在此先谢过大家了. 一.为什么基于TCP的通讯程序需 ...

  9. kappa系数

    kappa计算结果为-1~1,通常kappa是落在 0~1 间,可分为五组来表示不同级别的一致性: 0.0~0.20 极低的一致性(slight) 0.21~0.40 一般的一致性(fair) 0.4 ...

  10. C# 自己动手实现Spy++(二)

    昨天已经实现了获取窗口的标题.句柄等信息,但是高亮部分还有问题,而且红色绘制框擦除也有问题,今天就又研究了下上述两个问题. 高亮部分红色框只显示左上的边框,而右下的显示不出来,如图: 代码如下: pu ...