bzoj千题计划281:bzoj4558: [JLoi2016]方
http://www.lydsy.com/JudgeOnline/problem.php?id=4558
容斥原理
全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少有4个点被删掉的
正方形分 正着的和斜着的
斜着的正方形卡在一个正着的正方形的边框上
一个边长为i的正方形框,恰好可以框住i个正方形(1个正着的 和 i-1个斜着的)
所以 总的正方形= 
至少有一个点被删掉的:
枚举一个被删掉的点,
设它的上边有u行,下边有d行,左边有l列,右边有r列
那么以一对相对的边为底边,在确定一边作为高,就可以计算这个方向上的 贡献
比如 以l和r 为 底边(向左可以延伸l,向右可以延伸r),以u为高(向上可以延伸u)
一个边长为a的正方形框 可以唯一包含一个 有一个顶点 在正方形框上的正方形
正方形框 长为1的有2种,长为2的有3种,长为a的有a+1种
所以,如果最大的正方形框 长为z,
那么用等差数列求和公式可得, 这种情况下总的正方形数 为 z*(z+3)/2
z=min(h,l+r)
但是有一个问题
若z>l,那么 当正方形框为a(a>l)的时候,
正方形左边有一部分要出界,
一共有z-l 种 边长在左边要出界,由等差数列求和公式,这种情况下总的正方形数 还要减去 (z-l)*(z-l+1)/2
z>r 同理,还要减去 (z-r)*(z-r+1)/2
至少有两个点被删掉的:
枚举任意两个点p,q
设向量v=(q.x-p.x ,q.y-p.y)
如果正方形是正着的,那么这两个点在正方形的同一条边上
将向量v顺时针旋转90°,再将两个点平移向量v,即可得到一个正方形的另外两个点
判断这两个点是否出界,没有出界的话,贡献加1
同理,将向量v逆时针旋转90°,再将两个点平移,即可得到另一个方向的正方形
如果正方形是斜着的,那么枚举的这两个点当做对角线
假设两个点(px,py),(qx,qy)是正方形对角线上的两个顶点。
令dx=px-qx,dy=py-qy,x=(dx-dy)/2,y=(dx+dy)/2
那么 正方形的另一条对角线上的 两个顶点 分别为(px-x,py-y)和(qx+x,qy+y)
这个的求解,算出正方形的中心坐标,然后向量旋转,加加减减,就可以得到这个。。。

至少有3/4个点被删掉的:
在计算至少有两个点被删掉的时候,判断的时候 顺带 判上
然后计算至少被删3个点的,每个正方形计算了C(3,2)=3 遍
至少被删4个点的,每个正方形计算了C(4,2)=6 遍
再除一下
#include<set>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std; const int mod=1e8+; int n,m; struct Point
{
int x,y; bool operator < (Point p) const
{
return x<p.x || x==p.x&&y<p.y;
} Point(int x_=,int y_=):x(x_),y(y_){}
}e[]; set<Point>mp; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int cal(int l,int r,int h)
{
int z=min(l+r,h);
long long ans=1LL*z*(z+)/;
if(z>l) ans-=1LL*(z-l)*(z-l+)/;
if(z>r) ans-=1LL*(z-r)*(z-r+)/;
return ans%mod;
} int One(int x,int y)
{
int u=x,d=n-x,l=y,r=m-y;
return cal(u,d,l)+cal(u,d,r)+cal(l,r,u)+cal(l,r,d)-min(u,l)-min(l,d)-min(d,r)-min(r,u);
} bool inmap(Point p)
{
return p.x>= && p.x<=n && p.y>= && p.y<=m ;
} int count(Point p,Point q,int &cnt2,int &cnt3,int &cnt4)
{
if(inmap(p) && inmap(q))
{
int t=mp.count(p)+mp.count(q);
cnt2++;
if(t) cnt3++;
if(t>) cnt3++,cnt4++;
}
} int main()
{
int k;
read(n); read(m); read(k);
int ans=; int t=min(n,m);
for(int i=;i<=t;++i) ans=(ans+1LL*i*(n-i+)%mod*(m-i+)%mod)%mod;
int x,y;
for(int i=;i<=k;++i)
{
read(x); read(y);
mp.insert(Point(x,y));
e[i]=Point(x,y);
(ans-=One(x,y))%=mod;
}
Point p,q;
int cnt2=,cnt3=,cnt4=;
int dx,dy;
for(int i=;i<=k;++i)
{
p=e[i];
for(int j=i+;j<=k;++j)
{
q=e[j];
dx=p.x-q.x; dy=p.y-q.y;
count(Point(p.x+dy,p.y-dx),Point(q.x+dy,q.y-dx),cnt2,cnt3,cnt4);
count(Point(p.x-dy,p.y+dx),Point(q.x-dy,q.y+dx),cnt2,cnt3,cnt4);
if(abs(dx)+abs(dy) & ) continue;
x=dx-dy>>; y=dx+dy>>;
count(Point(p.x-x,p.y-y),Point(q.x+x,q.y+y),cnt2,cnt3,cnt4);
}
}
ans+=cnt2-cnt3/+cnt4/;
ans%=mod;
if(ans<) ans+=mod;
printf("%d",ans);
}
bzoj千题计划281:bzoj4558: [JLoi2016]方的更多相关文章
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)
http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...
- bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫
http://www.lydsy.com/JudgeOnline/problem.php?id=4557 假设当前到了x的子树,现在是合并 x的第k个子树 f[x][j] 表示x的前k-1个子树该覆盖 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...
- bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹
http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...
随机推荐
- 前端示例MVC网站
前端示例MVC网站 ASP.NET Zero 包含了一个公共web站点的前端页面和一个登陆页面.当您第一次运行项目的时候可以看到,如下图所示: 该前端网站有两个页面,一个是主页和关于我们.这些页面的内 ...
- startActivity时报错Calling startActivity() from outside of an Activity context requires the FLAG_ACTIVI
原代码如下: Intent intent = new Intent(); intent.setClass(mContext, PhotoView.class); Bundle bundle = new ...
- 并发系列(一)-----synchronized关键字
一 简介 说到并发不得不提的synchronized,synchronized关键字是元老级别的角色.在Java SE 1.6之前synchronized被称为是重量,在1.6之后对同步进行了一系列的 ...
- Jenkins分布式构建
Jenkins分布式构建 有时,如果有一个实例,它是一个更大,更重的项目,需要定期编译生成在许多计算机上.并运行所有这些构建了中央台机器上可能不是最好的选择.在这种情况下,人们可以配置其他Jenkin ...
- 机器视觉及图像处理系列之一(C++,VS2015)——搭建基本环境
自<人脸识别>系列发布至今,已一年多矣,期间除答复些许同好者留言外,未再更新文,盖因项目所迫,不得已转战它途,无暇.无料更博耳.其时,虽人已入项目中,然终耿怀于人脸识别方案之谬.初,写此文 ...
- idou老师教你学Istio 17 : 通过HTTPS进行双向TLS传输
众所周知,HTTPS是用来解决 HTTP 明文协议的缺陷,在 HTTP 的基础上加入 SSL/TLS 协议,依靠 SSL 证书来验证服务器的身份,为客户端和服务器端之间建立“SSL”通道,确保数据运输 ...
- Vue 路由详解
Vue 路由详解 对于前端来说,其实浏览器配合超级连接就很好的实现了路由功能.但是对于单页面应用来说,浏览器和超级连接的跳转方式已经不能适用,所以各大框架纷纷给出了单页面应用的解决路由跳转的方案. V ...
- CSAPP lab2 二进制拆弹 binary bombs phase_4
给出对应于7个阶段的7篇博客 phase_1 https://www.cnblogs.com/wkfvawl/p/10632044.htmlphase_2 https://www.cnblogs. ...
- Linux内核分析:完成一个简单的时间片轮转多道程序内核代码
PS.贺邦 原创作品转载请注明出处 <Linux内核分析>MOOC课程 http://mooc.study.163.com/course/USTC-1000029000 1.m ...
- 第三周 构造一个简单的Linux系统MenuOS
一. Linux内核源代码简介 稳定版内核:Linux-3.18.6 Linux内核源代码的目录结构: arch目录:在Linux内核源代码里占有的比重很大,因为Linux内核支持很多的体系结构, ...