hdu 2065(泰勒展式)
比赛的时候遇到这种题,只能怪自己高数学得不好,看着别人秒。。。。
由4种字母组成,A和C只能出现偶数次。
构造指数级生成函数:(1+x/1!+x^2/2!+x^3/3!……)^2*(1+x^2/2!+x^4/4!+x^6/6!……)^2.
前面是B和D的情况,可以任意取,但是相同字母一样,所以要除去排列数。后者是A和C的情况,只能取偶数个情况。
根据泰勒展开,e^x在x0=0点的n阶泰勒多项式为 1+x/1!+x^2/2!+x^3/3!……
而后者也可以进行调整,需要把奇数项去掉,则e^(-x)的展开式为1-x/1!+X^2/2!-X^3/3!……
所以后者可以化简为(e^x+e^(-x))/2。则原式为 (e^x)^2 * ((e^x*e^(-x))/2)^2
整理得到e^4x+2*e^2x+1。
又由上面的泰勒展开
e^4x = 1 + (4x)/1! + (4x)^2/2! + (4x)^3/3! + ... + (4x)^n/n!;
e^2x = 1 + (2x)/1! + (2x)^2/2! + (2x)^3/3! + ... + (2x)^n/n!;
对于系数为n的系数为(4^n+2*2^n)/4=4^(n-1)+2^(n-1);
快速幂搞之。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<cmath>
#define LL long long
#define MOD 100
#define eps 1e-6
#define N 100010
#define zero(a) fabs(a)<eps
using namespace std;
int PowMod(int a,LL b){
int ret=;
while(b){
if(b&)
ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=;
}
return ret;
}
int main(){
int t;
while(scanf("%d",&t)!=EOF&&t){
int cas=;
LL n;
while(t--){
scanf("%I64d",&n);
printf("Case %d: %d\n",++cas,(PowMod(,n-)+PowMod(,n-))%MOD);
}
printf("\n");
}
return ;
}
hdu 2065(泰勒展式)的更多相关文章
- [复变函数]第15堂课 4.3 解析函数的 Taylor 展式
1. Taylor 定理: 设 $f(z)$ 在 $K:|z-a|<R$ 内解析, 则 $$\bee\label{15:taylor} f(z)=\sum_{n=0}^\infty c_n(z ...
- [复变函数]第17堂课 5 解析函数的 Laurent 展式与孤立奇点 5. 1 解析函数的 Laurent 展式
0. 引言 (1) $f$ 在 $|z|<R$ 内解析 $\dps{\ra f(z)=\sum_{n=0}^\infty c_nz^n}$ (Taylor 级数). (2) $f$ 在 $ ...
- 求复变函数的 Taylor 展式与 Laurent 展式[华中师范大学2010年复变函数复试试题]
设 $$\bex f(z)=\frac{1}{(z-1)(z-2)}. \eex$$ (1) 求 $f(z)$ 在 $|z|<1$ 内的 Taylor 展式. (2) 求 $f(z)$ 在圆环 ...
- "红色病毒"问题 HDU 2065 递推+找循环节
题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=2065 递推类题目, 可以考虑用数学方法来做, 但是明显也可以有递推思维来理解. 递推的话基本就是状态 ...
- HDU 2065 “红色病毒”问题 --指数型母函数
这种有限制的类棋盘着色问题一般可以用指数型母函数来解决,设Hn表示这样的着色数,首先H0=1,则Hn等于四个字母的(A,B,C,D)的多重集合的n排列数,其中每个字母的重数是无穷,且要求A,C出现的次 ...
- HDU 5451——递推式&&循环节
题意 设 $y = (5+2\sqrt 6)^{1+2^x}$,给出 $x, M$($0\leq x \leq 2^{32}, M \leq 46337$),求 $[y]\%M$. 分析 由通项推递推 ...
- hdu 2065
ps:我的天...看网上各种难..对于我这个比较懒得人...我就找规律直接水过去了...前20一个循环,注意跳过第一轮的3个数就行..然后觉得比较坑的是,那个输入N,要用long long型... 代 ...
- hdu 2065 "红色病毒"问题
指数型母函数的应用 求A B C D 在规定条件下n个元素的排列个数,先写出指数型母函数 G(X) = ( 1 + x + x^2/2! + x^3/3! +... )^2 * ( 1+ x^2/2! ...
- hdu 2065 "红色病毒"问题(快速幂求模)
n=1 --> ans = 2 = 1*2 = 2^0(2^0+1) n=2 --> ans = 6 = 2*3 = 2^1(2^1+1) n=3 --> ans = 20 ...
随机推荐
- idea 导入项目后不能执行main方法
点击右键,出来不能run/debug 项目分为多个mouel模块,很多模块进来后在idea中丢失了(暂时不知道原因) 我们需要做的就是把丢失的模块加进来 ctrl+alt+shift+s 快捷键 或 ...
- POJ 1182 食物链 (拆点并查集)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 78601 Accepted: 23422 Description ...
- 理解 Continuation
理解 Continuation (2012-08-26 10:39:34) 终于,我也不能免俗地要来谈谈这几个 Schemer 的必谈话题(顺便山寨了一个标题). Scheme 是一门神奇的编 ...
- MT【111】画图估计
评:此类方程是超越方程,一般情况下无法解出具体的解,常见手段:1.画图 2.猜根.此处可以取特殊值a=2.5,b=3.5,容易知道此时$x=2.5\in(2,3)$
- 【转】树莓派Raspberry Pi - 还原已经装过系统的TF卡
想给树莓派换个系统的话,需要先把已经装过系统的TF卡进行还原,这里使用最简单粗暴无脑的方法: 1,下载安装Win32 Disk Imager(一般已经装过一次系统后,这个东西都有) 2,下载boots ...
- 【codevs1297】硬币 完全背包
题目大意:给定 N 种不同种类的硬币,每种硬币的重量范围在一个可变区间内,但是价值恒定,求给定一个重量 W,求有多少种面值不同的组合方式. 题解:如果硬币的重量恒定,那么就是一道裸的完全背包问题.因此 ...
- vue 新增时清除表单验证注意事项
// 清除表单校验的提示 if (this.$refs['XXX']) { // 延时执行 this.$nextTick(function () { this.$refs['XXX'].clearVa ...
- 数组初始化 memset fill
#include <cstdio> #include <cstdlib> #include <cmath> #include <cstring> #in ...
- Python常用模块-摘要算法(hashlib)
Python常用模块-摘要算法(hashlib) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MD5算法参数详解 1.十六进制md5算法摘要 #!/usr/bin/env p ...
- 第七节 认识SpringMVC中的表单标签
所谓成熟,就是:你要习惯,任何人的忽冷忽热:也要看淡,任何人的渐行渐远: --胖先生 SpringMVC的表单标签 回顾: JSTL标签 --C标签 FMT标签 自学:JSP如何自定义标签[开源社区当 ...