题目链接:http://codeforces.com/contest/1101/problem/G

题目大意:给你n个数,然后让你把这n个数分成尽可能多的集合,要求,每个集合的值看做这个集合所有元素的异或值,并且任意个集合对应的值,再进行异或也不能为0,然后如果不存在合理的分法的时候,输出-1。否则,输出能分出的最大的集合个数。

具体思路:求出这n个数的线性基就完事了,对于-1的情况,就是这n个值得异或值是0,这个时候无论你怎么分都是不管用的,其他情况直接输出线性基就可以了。

线性基的定义: 对于n个数,a1,a2,a3,a4.线性基b1,b2......,线性基满足的情况是这n个数,其中的任意个数的异或值都能用数组b中的某几个数求出来。

具体方法:一个数一个数的来,对于当前的数的首位(二进制),当前i位是1的时候,如果这一位没有被记录过,就让b[i]=a[i].否则,让a[i]^=b[i],继续往下走就可以了。

那么这个题为什么求线性基就可以了呢?我们可以通过求线性基的过程发现线性基的一个性质,线性基中的任意几个数都不可能异或是0,这个性质我们可以通过反证法来进行,如果异或是0的话,那就说明这个这几个数中,存在可以互相表达的情况,这就有违求线性基的过程了。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
# define ll long long
const int maxn = 2e5+;
int a[maxn],p[];
void cal(int n)
{
for(int i=; i<=n; i++)
{
if(a[i]==)continue;
for(int j=; j>=; j--)
{
if((a[i]&(<<j))==)
continue;
if(p[j]==)
{
p[j]=a[i];
break;
}
a[i]^=p[j];
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
int t=a[];
for(int i=; i<=n; i++)
{
t^=a[i];
}
if(t==)
printf("-1\n");
else
{
cal(n);
int num=;
for(int i=;i>=;i--){
if(p[i])num++;
}
printf("%d\n",num);
}
return ;
}

G. (Zero XOR Subset)-less(线性基)的更多相关文章

  1. CodeForces - 1101G :(Zero XOR Subset)-less(线性基)

    You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...

  2. CF1101G (Zero XOR Subset)-less 线性基

    传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...

  3. (Zero XOR Subset)-less-线性基

    (Zero XOR Subset)-less 题意 :把n个数分成多个集合,要求 不能有集合为空,最终不能有非空子集合异或值为0,尽可能划分的多一些. 思路 :非法情况就只有 n个数异或 为0,其他的 ...

  4. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  5. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  6. 牛客练习赛26 D xor序列 (线性基)

    链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...

  7. [luogu4151 WC2011] 最大XOR和路径 (线性基)

    传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...

  8. 2019年牛客多校第四场 B题xor(线段树+线性基交)

    题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...

  9. 2019牛客多校第四场B xor——线段树&&线性基的交

    题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...

随机推荐

  1. Linux内核实验作业六

    实验作业:分析Linux内核创建一个新进程的过程 20135313吴子怡.北京电子科技学院 [第一部分]阅读理解task_struct数据结构 1.进程是计算机中已运行程序的实体.在面向线程设计的系统 ...

  2. 2013337朱荟潼 Linux第二章读书笔记——从内核出发

    1.获取内核源码 1.1Git 分布式的:下载和管理Linux内核源代码: - 获取最新提交到版本树的一个副本 $ git clone git://git.kernel.org/pub/scm/lin ...

  3. OVS流表table之间的跳转

    OVS流表table之间的跳转 前言 今天在帮学弟解决问题的时候,遇到一个table0.table1之间的微妙小插曲,引起了注意,后来查了一下资料发现原因了. 问题描述 wpq@wpq:~$ sudo ...

  4. 软件工程学习之小学四则混合运算出题软件 Version 1.00 设计思路及感想

    对于小学四则混合运算出题软件的设计,通过分析设计要求,我觉得为了这个软件在今后便于功能上的扩充,可以利用上学期所学习的<编译原理>一课中的LL1语法分析及制导翻译的算法来实现.这样做的好处 ...

  5. vs2013c#测试using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApplication1_CXY { class Program { stati

    首先安装Unit Test Generator.方法为:工具->扩展和更新->联机->搜索“图标为装有蓝色液体的小试管.Unit Test Generator”, 编写代码,生成一个 ...

  6. redis 事务,持久化,日志,主从,VM

    redis目前对事务的支持比较简单,只能保证一个客户端连接发起事务中的命令可以连续执行,而中间不会插入其他客户端的命令. 1.事务 一般情况下,redis接收到一个客户端发送的命令,立刻执行并返回结果 ...

  7. 助教日志—请沈航13级同学将GIT地址和CNBLOG地址发到这篇博文的评论中

    一.评论形式: 学号 姓名 博客地址 GIT地址 如 2011102456 郑蕊 http://www.cnblogs.com/zhengrui0452/ http://121.42.14.1/Rui ...

  8. [转帖].NET Framework各版本操作系统支持

    .NET Framework .NET版本 1.0 1.1 2.0 3.0 3.5 4.0 4.5 完整版本 1.0.3705.0 1.1.4322.573 2.0.50727.42 3.0.4506 ...

  9. tp3.2.3运用phpexcel将excel文件导入mysql数据库

    1,下载PHPExcel 2,配置将下载好的PHPExcel文件与PHPExcel.php 放到thinkphp 根目录 include/Library/Org/Util/下面 3,同时将PHPExc ...

  10. 【版本管理】自定义git

    Git除了可配置user.name和user.email外,实际上,Git还有很多可配置项. 如 $ git config --global color.ui true,让Git显⽰示颜⾊色,会让命令 ...