Description

在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

Solution

首先把直线按照斜率排序,再用个栈维护一下。

画个图可以发现,如果直线$i$和直线$stack[top]$的交点在直线$stack[top-1]$的左边,那么$stack[top]$就可以被弹出了。随便判判就好了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define N (50009)
#define INF (1e18)
using namespace std; struct Vector
{
double x,y;
Vector(double xx=,double yy=)
{
x=xx; y=yy;
}
}p[N];
typedef Vector Point; struct Line
{
double k,b;
Point x,y;
int id;
bool operator < (const Line &a) const
{
return k==a.k?b>a.b:k>a.k;
}
bool operator == (const Line &a) const
{
return k==a.k && b==a.b;
}
}L[N],stack[N]; int n,k,b,ans[N],top; double Cross(Vector a,Vector b) {return a.x*b.y-a.y*b.x;}
Vector operator - (Vector a,Vector b) {return Vector(a.x-b.x,a.y-b.y);} inline int read()
{
int x=,w=; char c=getchar();
while (!isdigit(c)) {if (c=='-') w=-; c=getchar();}
while (isdigit(c)) x=x*+c-'', c=getchar();
return x*w;
} Point Line_Cross(Line u,Line v)
{
Point ans;
ans.x=(v.b-u.b)/(u.k-v.k);
ans.y=u.k*ans.x+u.b;
return ans;
} int main()
{
n=read();
for (int i=; i<=n; ++i)
{
k=read(); b=read();
L[i]=(Line){k,b};
L[i].x=(Point){,b};
L[i].y=(Point){,k+b};
L[i].id=i;
}
sort(L+,L+n+);
for (int i=; i<=n; ++i)
{
if (top && L[i].k==stack[top].k) continue;
while (top>=)
{
Point p=Line_Cross(stack[top],L[i]);
if (Cross(stack[top-].x-p,stack[top-].y-p)>) break;
top--;
}
stack[++top]=L[i];
}
for (int i=; i<=top; ++i) ans[stack[i].id]=;
for (int i=; i<=n; ++i) if (ans[i]) printf("%d ",i);
}

BZOJ1007:[HNOI2008]水平可见直线(计算几何)的更多相关文章

  1. [bzoj1007][HNOI2008]水平可见直线_单调栈

    水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...

  2. [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  3. bzoj 1007 : [HNOI2008]水平可见直线 计算几何

    题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会 ...

  4. [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...

  5. BZOJ1007: [HNOI2008]水平可见直线(单调栈)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Descripti ...

  6. bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳

    在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...

  7. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  8. bzoj1007 [HNOI2008]水平可见直线——单调栈

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...

  9. bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com

    Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...

随机推荐

  1. glob 在webpack中的使用。

    glob 在webpack中对文件的路径处理非常之方便,比如当搭建多页面应用时就可以使用glob对页面需要打包文件的路径进行很好的处理. 官方文档地址 : https://www.npmjs.com/ ...

  2. JS去掉字符串前后空格或去掉所有空格的用法

    1.  去掉字符串前后所有空格: 代码如下: function Trim(str) { return str.replace(/(^\s*)|(\s*$)/g, ""); } 说明 ...

  3. Android-Binder机制

    http://www.jianshu.com/p/af2993526daf https://www.jianshu.com/u/e347b97e2f0c 上面这篇文章讲得很清楚.以下我的一些理解: 还 ...

  4. ActivityManagerService原理&源码

    https://www.kancloud.cn/alex_wsc/android-deep2/413386 http://wiki.jikexueyuan.com/project/deep-andro ...

  5. CSS参考手册

    CSS 属性 CSS 属性组: 动画 背景 边框和轮廓 盒(框) 颜色 内容分页媒体 定位 可伸缩框 字体 生成内容 网格 超链接 行框 列表 外边距 Marquee 多列 内边距 分页媒体 定位 打 ...

  6. Vue.js之生命周期

    有时候,我们需要在实例创建过程中进行一些初始化的工作,以帮助我们完成项目中更复杂更丰富的需求开发,针对这样的需求,Vue提供给我们一系列的钩子函数. vue生命周期 beforeCreate 在实例初 ...

  7. Ajax发送POST请求对数据的封装

    Ajax发送POST请求把数据到后端后,后端收到数据并解析出来 示列一: Ajax发送请求,这里主要是发送一个数组的数据类型到后端,如果没有先把数组进行格式化成字符串的话,后端就收了就是一个字符串类型 ...

  8. css 解决图片下小空隙问题

    http://baijiahao.baidu.com/s?id=1581004863053583633&wfr=spider&for=pc 这篇讲的挺清楚,也有解决办法

  9. python学习笔记之——python安装mysqldb后,pycharm导入还是报错问题

    在安装mysqldb过程中遇到,本来已经安装了mysqldb了,但是在pycharm中import   MySQLdb还是报错找不到该模块的问题.解决方法如下:1.file->settings ...

  10. JSP内置对象——page对象

    观察可发现,这里面的方法,就是Object这个类下的一些方法,下面进行一个简单的演示,比如“toString()”方法: 运行结果: 这时候看到了一个“org.apache.jsp.page_jsp@ ...