P1272 重建道路
题目描述
一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场。由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的。因此,牧场运输系统可以被构建成一棵树。John想要知道另一次地震会造成多严重的破坏。有些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目。
输入输出格式
输入格式:
第1行:2个整数,N和P
第2..N行:每行2个整数I和J,表示节点I是节点J的父节点。
输出格式:
单独一行,包含一旦被破坏将分离出恰含P个节点的子树的道路的最小数目。
输入输出样例
说明
【样例解释】
如果道路1-4和1-5被破坏,含有节点(1,2,3,6,7,8)的子树将被分离出来
f(u,j):以u为节点的子树,保留j个节点(必须包含u),需要切断的最小道路数目(不考虑u的父亲!!有些题解考虑u父亲做的)
f[u][j]=min(f[u][j],f[u][j-k]+f[v][k]-1);
因为u与v需要连通,所以需要少减一个哦
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c)
{
return min(min(a, b), c);
}
template <class T> inline T max(T a, T b, T c)
{
return max(max(a, b), c);
}
template <class T> inline T min(T a, T b, T c, T d)
{
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d)
{
return max(max(a, b), max(c, d));
}
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define mp make_pair
#define pb push_back
const int maxn = ;
#define mod 100003
const int N=; // name*******************************
int Head[N];
int tot=;
struct edge
{
int to,next;
} e[N];
int n,m;
int f[N][N];
int a,b;
int du[N];
int ans;
// function******************************
void add(int u,int v)
{
e[++tot].to=v;
e[tot].next=Head[u];
Head[u]=tot;
} int dfs(int u)
{
int cnt=;
for(int p=Head[u]; p; p=e[p].next)
{
int v=e[p].to;
int t=dfs(v);
cnt+=t;
FFor(j,min(m,cnt),)
{
FFor(k,min(j-,t),)
{
f[u][j]=min(f[u][j],f[u][j-k]+f[v][k]-);
// cout<<u<<","<<v<<","<<j<<":"<<f[u][j]<<endl;
}
}
}
return cnt;
} //***************************************
int main()
{
// freopen("test.txt", "r", stdin);
cin>>n>>m;
me(f,);
For(i,,n-)
{
cin>>a>>b;
add(a,b);
du[a]++;
}
For(i,,n)
f[i][]=du[i];
dfs();
ans=f[][m]; //注意这里总根不需要+1!!!
For(i,,n)
{
ans=min(ans,f[i][m]+); //其他节点因为有父亲,需要切断联系,所以+1,
}
cout<<ans;
return ;
}
P1272 重建道路的更多相关文章
- 洛谷 P1272 重建道路 解题报告
P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...
- P1272 重建道路(树形dp)
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟 ...
- 洛谷 P1272 重建道路(树形DP)
P1272 重建道路 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟 ...
- [洛谷P1272] 重建道路
类型:树形背包 传送门:>Here< 题意:给出一棵树,要求断开$k$条边来分离出一棵有$P$个节点的子树.求最小的$k$ 解题思路 和上一题类型相同,但不那么好做了——分离出的一棵子树肯 ...
- luogu P1272 重建道路
嘟嘟嘟 这好像是一种树上背包. 我们令dp[i][j] 表示在 i 所在的子树中(包括节点 i)分离出一个大小为 j 的子树最少需割多少条边. 那么转移方程就是 dp[u][j] = min(dp[u ...
- 洛谷 P1272 重建道路
题目链接 题解 树形dp \(f_{i, j}\)表示以\(i\)为根的子树切出联通块大小为\(j\)的最小答案 显然\(f[i][1]\)为与\(i\)连的边数 设\(v\)是\(u\)的儿子 那么 ...
- Luogu P1272 重建道路 树形DP
刚才瞅了半天自己当初写的,终于瞅出来了...QWQ 设f[i][j]表示以i为根的子树,包含j个节点所需砍掉的最小边数 那么可知f[u][1]=u的度: 方程:f[u][j]=min(f[u][j], ...
- 【洛谷P1272】 重建道路
重建道路 题目链接 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的.因此, ...
- 【Luogu1272】重建道路(动态规划)
[Luogu1272]重建道路(动态规划) 题面 题目描述 一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场.由于人们没有时间建设多余的道路,所以现在从一个牲 ...
随机推荐
- 小程序通过用户授权获取手机号之getPhoneNumber
小程序有一个获取用户很便捷的api,就是通过getPhoneNumber获取用户的已经绑定微信的手机号码.有一点要大家注意,现在微信和注重用户体验,有些方法都是需要用户主动去触发才能调用的,比如get ...
- 使用PHP把图片上传到七牛
先从官网下载SDK,然后新建一个文件,里面包括上传,下载,删除 <?php header("Content-Type:text/html; charset=utf8"); r ...
- Django. No changes detected when "makemigrations"
在修改了models.py后,有些用户会喜欢用python manage.py makemigrations生成对应的py代码. 但有时执行python manage.py makemigration ...
- javascript的异步编程解决方案收集
缘起 没理解js异步的同学看下面的例子: for (var i = 0; i < 5; i++) { //模拟一个异步操作 setTimeout(() => { console.log(i ...
- OpenCV 线条及形状
1.线条 # dst 相当于画板 dst=np.zeros((300,300,3),np.uint8) # #参1 图像 参2 起始点 参3 结束点 参4 颜色 line=cv2.line(dst,( ...
- CSS 小结笔记之解决flex布局边框对不齐
在使用flex 进行伸缩布局的时候,经常会给子盒子设置边框,这时经常会出现上下边框对不齐的情况.本篇文章来探讨并解决这个问题. 具体出现的问题如下图所示 具体代码如下 <!DOCTYPE htm ...
- tomcat catalina.out日志切割(logrotate)
简单说明: 1,因为tomcat日志会一直往catalina.out里面输出,所以回到值catalina.out非常大,占用磁盘空间 2,日志非常大,查看日志就需要很长时间. 3,据说catalina ...
- 【gp数据库】你一定会用到的运维语句宝典
-- 查询未空闲的进程信息 select * from pg_stat_activity where current_query<>'<IDLE>'; 结果可查看数据库名,进程 ...
- 小米正式开源 SQL 智能优化与改写工具 SOAR
近日,小米正式宣布开源 SOAR. 截至今日,该项目已经获得了 350 个「star」以及 44 个「fork」(GitHub项目地址:https://github.com/XiaoMi/soar) ...
- Android图形显示之硬件抽象层Gralloc【转】
https://blog.csdn.net/yangwen123/article/details/12192401 FrameBuffer驱动程序分析文中介绍了Linux系统下的显示驱动框架,每个显示 ...