BZOJ2431 HAOI2009逆序对数列(动态规划)
对于排列计数问题一般把数按一个特定的顺序加入排列。这个题做法比较显然,考虑将数从小到大加入排列即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 1010
#define P 10000
int n,k,f[N][N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2431.in","r",stdin);
freopen("bzoj2431.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),k=read();if (!k) {cout<<;return ;}
for (int j=;j<=k;j++) f[][j]=;
for (int i=;i<=n;i++)
{
for (int j=;j<=k;j++)
inc(f[i][j],((j-i>=?f[i-][j]-f[i-][j-i]:f[i-][j])+P)%P);
for (int j=;j<=k;j++)
inc(f[i][j],f[i][j-]);
}
cout<<(f[n][k]-f[n][k-]+P)%P;
return ;
}
BZOJ2431 HAOI2009逆序对数列(动态规划)的更多相关文章
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- bzoj2431: [HAOI2009]逆序对数列
dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...
- bzoj2431: [HAOI2009]逆序对数列(DP)
f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...
- [BZOJ2431][HAOI2009]逆序对数列(DP)
从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...
- 【BZOJ2431】逆序对数列(动态规划)
[BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...
随机推荐
- kafka 部署
Windows平台kafka环境的搭建 https://blog.csdn.net/u010054969/article/details/70241478
- SNAT和DNAT
1.SNAT iptables防火墙 Centos6.6 64位 iptables 内网:eth0 172.16.4.1 外网:eth 112.112.112.112/24 当有用户访问公网时,修改用 ...
- linux系统分析工具续-SystemTap和火焰图(Flame Graph)
本文为网上各位大神文章的综合简单实践篇,参考文章较多,有些总结性东西,自认暂无法详细写出,建议读文中列出的参考文档,相信会受益颇多.下面开始吧(本文出自 “cclo的博客” 博客,请务必保留此出处ht ...
- 20155233 《网络对抗》Exp4 恶意代码分析
使用schtasks指令监控系统运行 先在C盘目录下建立一个netstatlog.bat文件,用来将记录的联网结果格式化输出到netstatlog.txt文件中,netstatlog.bat内容为: ...
- 20155238 2016-2017-2 《JAVA程序设计》第九周学习总结
教材学习内容总结 第十六章 JDBC SQL的解决方案是JDBC,在Java中,JDBC API主要用来存取数据库. *JDBC API是一个Java API,可以访问任何类型表列数据,特别是存储在关 ...
- 20155308《网络对抗》Exp9 Web安全基础实践
20155308<网络对抗>Exp9 Web安全基础实践 本实践的目标理解常用网络攻击技术的基本原理.Webgoat实践下相关实验. 基础问题回答 SQL注入攻击原理,如何防御? 原理:攻 ...
- face_recognition环境配置及命令行工具测试
由于某种不可抗力(又是它!)我写了这篇博客,主要目的是记录. face_recognition是啥子? face_recognition号称世界上最简单的人脸识别库,可使用 Python 和命令行进行 ...
- 汇编 EAX,EBX,ECX,EDX,寄存器
知识点: 寄存器EAX 寄存器AX 寄存器AH 寄存器AL 一.EAX与AX,AH,AL关系图 一格表示一字节 #include <Windows.h> int _tmain(int ar ...
- Hadoop开发第3期---Hadoop的伪分布式安装
一.准备工作 1. 远程连接工具的安装 PieTTY 是在PuTTY 基础上开发的,改进了Putty 的用户界面,提供了多语种支持.Putty 作为远程连接linux 的工具,支持SSH 和telne ...
- 设计模式 笔记 状态模式 State
//---------------------------15/04/28---------------------------- //State 状态模式----对象行为型模式 /* 1:意图: ...