1913: [Apio2010]signaling 信号覆盖

Time Limit: 20 Sec  Memory Limit: 64 MB
Submit: 1232  Solved: 506
[Submit][Status][Discuss]

Description

Input

输入第一行包含一个正整数 n, 表示房子的总数。接下来有 n 行,分别表示 每一个房子的位置。对于 i = 1, 2, .., n, 第i 个房子的坐标用一对整数 xi和yi来表 示,中间用空格隔开。

Output

输出文件包含一个实数,表示平均有多少个房子被信号所覆盖,需保证输出 结果与精确值的绝对误差不超过0.01。

Sample Input

4
0 2
4 4
0 0
2 0

Sample Output

3.500

HINT

3.5, 3.50, 3.500, … 中的任何一个输出均为正确。此外,3.49, 3.51, 3.499999,…等也都是可被接受的输出。 
【数据范围】 
100%的数据保证,对于 i = 1, 2, .., n, 第 i 个房子的坐标(xi, yi)为整数且–1,000,000 ≤ xi, yi ≤ 1,000,000. 任何三个房子不在同一条直线上,任何四个房子不在同一个圆上; 
40%的数据,n ≤ 100; 
70%的数据,n ≤ 500; 
100%的数据,3 ≤ n ≤ 1,500。

Source

Solution

这题的思路还是很巧妙的QwQ

首先要是枚举点,复杂度是$O(N^4)$的,而且难以进一步优化。

这里保证四点不共圆,所以可以考虑一下从多边形对答案的贡献的入手。

对于一个凸多边形,它对答案的贡献是$2$,即以一组对角和$>\pi$的两个点中的任意一个和另外两个点做圆,一定能覆盖另一个点。

对于一个凹多边形,它对答案的贡献只有$1$,即以靠外三个点做圆可以覆盖凹进去的那个点。

所以可以得到答案$ans=3+\frac {2*cnt_{凸}+1*cnt_{凹}} {C^{N}_{3}}$

然后就是如何快速的求出凸多边形和凹多边形的数量了。

因为这里保证了不存在三点共线,考虑$O(N^2)$的枚举两个点组成的一条直线,算出直线两边的两个点和直线上两点组成多边形的情况。

对于直线两边的点数量分别是$a$和$b$,就对答案加入$C^{a}_{2}$和$C^{b}_{2}$,这里利用极角排序,可以利用单调性做到直线旋转时的均摊$O(1)$的复杂度。

然后考虑这样统计出来的是什么,对于一个凸多边形,利用这样的方式,会被统计四次,对于一个凹多边形,这样会统计三次,所以这样的答案就是$4*cnt_{凸}+3*cnt_{凹}$

然后减掉$2*(cnt_{凸}+cnt_{凹})=2*cnt_{总}=2*C^{n}_{4}$,就可以得到$2*cnt_{凸}+1*cnt_{凹}$。同时就可以得到答案。

所以总复杂度是$O(N^2)$就得到解决。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define Pi acos(-1.0)
#define MAXN 2010 int N,tot;
struct Point{
int x,y;
}P[MAXN];
double k[MAXN<<1],ans; inline double C(int n,int m)
{
double re=1;
for (int i=n-m+1; i<=n; i++) re=re*i;
for (int i=1; i<=m; i++) re=re/i;
return re;
} int main()
{
N=read();
for (int i=1; i<=N; i++) P[i].x=read(),P[i].y=read(); for (int i=1; i<=N; i++) {
tot=0;
for (int j=1; j<=N; j++)
if (i!=j) k[++tot]=atan2(P[j].x-P[i].x,P[j].y-P[i].y);
sort(k+1,k+tot+1);
for (int j=1; j<=tot; j++) k[tot+j]=k[j]+2.0*Pi;
for (int j=1,now=1; j<=tot; j++) {
while (k[now]-k[j]<Pi) now++;
int cnt=now-j-1;
ans+=C(cnt,2);
}
} ans-=C(N,4)*2; printf("%.6lf\n",ans/C(N,3)+3.0);
return 0;
}

  

【BZOJ-1913】signaling信号覆盖 极角排序 + 组合的更多相关文章

  1. [BZOJ 1913] signaling 信号覆盖

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1913 TIP:(注意,这题只能输出6位才能过,7位都不行wtf?) Algorithm: ...

  2. bzoj1913[Apio2010]signaling 信号覆盖 计算几何

    1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1583  Solved: 646[Subm ...

  3. bzoj 1913: [Apio2010]signaling 信号覆盖【旋转卡壳(?)】

    参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案 ...

  4. [CF1025F]Disjoint Triangles[极角排序+组合计数]

    题意 平面上有 \(n\) 个点,选出六个点构成两个三角形,问有多少种构造方式使得两个三角形没有交集. \(n\leq 2000\) 分析 枚举连接两个三角形的两个顶点,同时能够将两个三角形划分在直线 ...

  5. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  6. bzoj 5099 [POI2018]Pionek 计算几何 极角排序

    [POI2018]Pionek Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 269  Solved: 80[Submit][Status][Disc ...

  7. 【BZOJ】1913: [Apio2010]signaling 信号覆盖(计算几何+计数)

    题目 传送门:QWQ 分析 人类智慧题,不会做...... 详细题解1      详细题解2 总体思路是考虑四边形 讨论凹四边形凸四边形,最后加一个单调性优化省掉个$ O(n) $ 代码 代码感觉好短 ...

  8. 【bzoj1913】 Apio2010—signaling 信号覆盖

    http://www.lydsy.com/JudgeOnline/problem.php?id=1913 (题目链接) 题意 给出一个平面上n个点,求任选3个点画一个圆所包含的点的期望值. Solut ...

  9. bzoj1913: [Apio2010]signaling 信号覆盖

    传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...

随机推荐

  1. Linux - 用户操作

    常用命令 users # 显示所有的登录用户 groups # 列出当前用户和他所属的组 who -q # 显示所有的登录用户 groupadd # 添加组 useradd user # 建立用户 p ...

  2. MySQL-存储过程procedure

    存储过程:是一个SQL语句集合,当主动去调用存储过程时,其中内部的SQL语句会按照逻辑执行. 1.创建存储过程: -- 创建存储过程 delimiter // create procedure p1( ...

  3. mysql_存储过程_后一行减去前一行

    DELIMITER $$ /*统计单个用户登录次数的存过 @times_count int 返回值 @i 记录行号的变量 初始值为0 @temp 记录时间差的变量 @total 记录登录次数的变量 初 ...

  4. 标准linu休眠和唤醒机制分析(四)【转】

    转自:http://blog.csdn.net/lizhiguo0532/article/details/6453552 suspend第三.四.五阶段:platform.processor.core ...

  5. 用一句SQL查询相对复杂的统计报表

    --统计从2017年3月份开始每个月金融服务支付前分期申请数以及通过(核账完成)数 ,ApplyTime)) ,ApplyTime)) as varchar)+'月' as 日期,count(*) a ...

  6. WCF开发中将net.tcp协议寄宿到IIS的方法

    1 部署IIS 1.1 安装WAS IIS原本是不支持非HTTP协议的服务,为了让IIS支持net.tcp,必须先安装WAS(Windows Process Activation Service),即 ...

  7. 解决urbuntu桌面本客户端输入ll command not found

    用桌面版的urbuntu系统,打开客户端输入ll,报错如下 于是度娘,解决方案:可以作如下修改:打开 ~/.bashrc 找到 #alias ll=’ls -l’,去掉前面的#就可以了.(关闭原来的终 ...

  8. IOC创建对象的几种方式

    接上一篇IOC入门 IOC创建对象的几种方式 1)调用无参数构造器 2)带参数构造器 3)工厂创建对象 工厂类:静态方法创建对象 工厂类:非静态方法创建对象 1.对之前的User类进行一些修改,加上一 ...

  9. Gearman In Action

    分布式任务系统是一个常见的需求,如果将 Gearman 作为 build block 来搭建这个系统的话,这样能够 make your life much easier. 首先看看 Gearman 是 ...

  10. fstab文件详解

    挂载分区的位置 挂载点 分区格式 设置 备份自检 UUID=94e4e... / ext4 defaults,barrier=0 1 1 tmpfs /dev/shm tmpfs defaults 0 ...