1913: [Apio2010]signaling 信号覆盖

Time Limit: 20 Sec  Memory Limit: 64 MB
Submit: 1232  Solved: 506
[Submit][Status][Discuss]

Description

Input

输入第一行包含一个正整数 n, 表示房子的总数。接下来有 n 行,分别表示 每一个房子的位置。对于 i = 1, 2, .., n, 第i 个房子的坐标用一对整数 xi和yi来表 示,中间用空格隔开。

Output

输出文件包含一个实数,表示平均有多少个房子被信号所覆盖,需保证输出 结果与精确值的绝对误差不超过0.01。

Sample Input

4
0 2
4 4
0 0
2 0

Sample Output

3.500

HINT

3.5, 3.50, 3.500, … 中的任何一个输出均为正确。此外,3.49, 3.51, 3.499999,…等也都是可被接受的输出。 
【数据范围】 
100%的数据保证,对于 i = 1, 2, .., n, 第 i 个房子的坐标(xi, yi)为整数且–1,000,000 ≤ xi, yi ≤ 1,000,000. 任何三个房子不在同一条直线上,任何四个房子不在同一个圆上; 
40%的数据,n ≤ 100; 
70%的数据,n ≤ 500; 
100%的数据,3 ≤ n ≤ 1,500。

Source

Solution

这题的思路还是很巧妙的QwQ

首先要是枚举点,复杂度是$O(N^4)$的,而且难以进一步优化。

这里保证四点不共圆,所以可以考虑一下从多边形对答案的贡献的入手。

对于一个凸多边形,它对答案的贡献是$2$,即以一组对角和$>\pi$的两个点中的任意一个和另外两个点做圆,一定能覆盖另一个点。

对于一个凹多边形,它对答案的贡献只有$1$,即以靠外三个点做圆可以覆盖凹进去的那个点。

所以可以得到答案$ans=3+\frac {2*cnt_{凸}+1*cnt_{凹}} {C^{N}_{3}}$

然后就是如何快速的求出凸多边形和凹多边形的数量了。

因为这里保证了不存在三点共线,考虑$O(N^2)$的枚举两个点组成的一条直线,算出直线两边的两个点和直线上两点组成多边形的情况。

对于直线两边的点数量分别是$a$和$b$,就对答案加入$C^{a}_{2}$和$C^{b}_{2}$,这里利用极角排序,可以利用单调性做到直线旋转时的均摊$O(1)$的复杂度。

然后考虑这样统计出来的是什么,对于一个凸多边形,利用这样的方式,会被统计四次,对于一个凹多边形,这样会统计三次,所以这样的答案就是$4*cnt_{凸}+3*cnt_{凹}$

然后减掉$2*(cnt_{凸}+cnt_{凹})=2*cnt_{总}=2*C^{n}_{4}$,就可以得到$2*cnt_{凸}+1*cnt_{凹}$。同时就可以得到答案。

所以总复杂度是$O(N^2)$就得到解决。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define Pi acos(-1.0)
#define MAXN 2010 int N,tot;
struct Point{
int x,y;
}P[MAXN];
double k[MAXN<<1],ans; inline double C(int n,int m)
{
double re=1;
for (int i=n-m+1; i<=n; i++) re=re*i;
for (int i=1; i<=m; i++) re=re/i;
return re;
} int main()
{
N=read();
for (int i=1; i<=N; i++) P[i].x=read(),P[i].y=read(); for (int i=1; i<=N; i++) {
tot=0;
for (int j=1; j<=N; j++)
if (i!=j) k[++tot]=atan2(P[j].x-P[i].x,P[j].y-P[i].y);
sort(k+1,k+tot+1);
for (int j=1; j<=tot; j++) k[tot+j]=k[j]+2.0*Pi;
for (int j=1,now=1; j<=tot; j++) {
while (k[now]-k[j]<Pi) now++;
int cnt=now-j-1;
ans+=C(cnt,2);
}
} ans-=C(N,4)*2; printf("%.6lf\n",ans/C(N,3)+3.0);
return 0;
}

  

【BZOJ-1913】signaling信号覆盖 极角排序 + 组合的更多相关文章

  1. [BZOJ 1913] signaling 信号覆盖

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1913 TIP:(注意,这题只能输出6位才能过,7位都不行wtf?) Algorithm: ...

  2. bzoj1913[Apio2010]signaling 信号覆盖 计算几何

    1913: [Apio2010]signaling 信号覆盖 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1583  Solved: 646[Subm ...

  3. bzoj 1913: [Apio2010]signaling 信号覆盖【旋转卡壳(?)】

    参考:https://blog.csdn.net/qpswwww/article/details/45334033 讲的很清楚 做法比较像旋转卡壳但是具体是不是我也不清楚.. 首先知道只要求出每种方案 ...

  4. [CF1025F]Disjoint Triangles[极角排序+组合计数]

    题意 平面上有 \(n\) 个点,选出六个点构成两个三角形,问有多少种构造方式使得两个三角形没有交集. \(n\leq 2000\) 分析 枚举连接两个三角形的两个顶点,同时能够将两个三角形划分在直线 ...

  5. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  6. bzoj 5099 [POI2018]Pionek 计算几何 极角排序

    [POI2018]Pionek Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 269  Solved: 80[Submit][Status][Disc ...

  7. 【BZOJ】1913: [Apio2010]signaling 信号覆盖(计算几何+计数)

    题目 传送门:QWQ 分析 人类智慧题,不会做...... 详细题解1      详细题解2 总体思路是考虑四边形 讨论凹四边形凸四边形,最后加一个单调性优化省掉个$ O(n) $ 代码 代码感觉好短 ...

  8. 【bzoj1913】 Apio2010—signaling 信号覆盖

    http://www.lydsy.com/JudgeOnline/problem.php?id=1913 (题目链接) 题意 给出一个平面上n个点,求任选3个点画一个圆所包含的点的期望值. Solut ...

  9. bzoj1913: [Apio2010]signaling 信号覆盖

    传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...

随机推荐

  1. 何凯文每日一句打卡||DAY9

  2. Linux iptables常用命令的使用

    为什么会有本文 因为最近帮一个朋友布署一个上网梯子,他那边本来用的是v2ray,但是他想用ssr,但是安装配置ssr过程中出了很多问题,比如linux内核版本4.9有点老,不支持bbr加速.无法连接s ...

  3. Python3之外部文件调用Django程序操作model等文件实现

    import os import sys import django sys.path.append(r'C:\Users\Administrator\PycharmProjects\your pro ...

  4. 爬虫笔记之刷小怪练级:yymp3爬虫(音乐类爬虫)

    一.目标 爬取http://www.yymp3.com网站歌曲相关信息,包括歌曲名字.作者相关信息.歌曲的音频数据.歌曲的歌词数据. 二.分析 2.1 歌曲信息.歌曲音频数据下载地址的获取 随便打开一 ...

  5. deeplearning.ai学习RNN

    一.RNN基本结构 普通神经网络不能处理时间序列的信息,只能割裂的单个处理,同时普通神经网络如果用来处理文本信息的话,参数数目将是非常庞大,因为如果采用one-hot表示词的话,维度非常大. RNN可 ...

  6. 关联查询resultMap使用规则总结——(十一)

    resultType: 作用: 将查询结果按照sql列名pojo属性名一致性映射到pojo中. 场合: 常见一些明细记录的展示,比如用户购买商品明细,将关联查询信息全部展示在页面时,此时可直接使用re ...

  7. CasperJS API中文博客链接

    http://www.cnblogs.com/reach296/tag/Casperjs/

  8. jexus - 分析日志文件

    1.统计IP访问次数 awk '{print $3}' default |sort -n|uniq -c|sort -rn|head

  9. 卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(转)

    参考:http://blog.csdn.net/xbinworld/article/details/45619685

  10. (五)消费Dubbo服务

    前面我们搞了发布Dubbo服务,发布的服务就是用来消费的,所以我们这里来调用服务,消费下: 创建maven项目 dubbo-demo-consumer pom.xml配置下: <dependen ...