分析:

构造法...每次找到一个没有被选过的数,用这个数推出一个表格,之后在表格上跑状压DP,时间复杂度O(n)

附上代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
#define N 25
#define M 1<<11
#define mod 1000000001
int f[N][M],a[N][N],b[N],K,n,m,vis[1000005];
long long ans=1;
int calc(int t)
{
memset(b,0,sizeof(b));
a[1][1]=t;
for(int i=2;i<=18;i++)
{
a[i][1]=a[i-1][1]<<1;
if(a[i][1]>n)a[i][1]=n+1;
}
for(int i=1;i<=18;i++)
{
for(int j=2;j<=11;j++)
{
a[i][j]=a[i][j-1]*3;
if(a[i][j]>n)a[i][j]=n+1;
}
}
for(int i=1;i<=18;i++)
{
for(int j=1;j<=11;j++)
{
if(a[i][j]<=n)
{
b[i]+=(1<<(j-1));
vis[a[i][j]]=1;
}
}
}
for(int i=0;i<=18;i++)
{
for(int S=0;S<=b[i];S++)
{
f[i][S]=0;
}
}
f[0][0]=1;
for(int i=1;i<=18;i++)
{
for(int S=0;S<=b[i-1];S++)
{
if(!f[i-1][S])continue;
for(int s=0;s<=b[i];s++)
{
if((S&s)||(s&(s<<1)))continue;
f[i][s]=(f[i][s]+f[i-1][S])%mod;
}
}
}
return f[18][0];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
ans=(ans*calc(i))%mod;
}
}
printf("%lld\n",ans);
return 0;
}

  

[HNOI2012]集合选数 BZOJ2734的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  3. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  4. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  5. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  6. bzoj2734:[HNOI2012]集合选数(状压DP)

    菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...

  7. bzoj2734: [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)

    Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...

  9. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

随机推荐

  1. Spring boot初入门

    1. Spring的Java配置方式 Java配置是Spring4.x推荐的配置方式,可以完全替代xml配置. 1.1. @Configuration 和 @Bean Spring的Java配置方式是 ...

  2. Impala随手记

    最近开始使用Impala,基本完全兼容传统SQL,并且查询速度飞快,是Hive的良好替代: 1.登录及简单查询 impala-shell #列出数据库 show databases; #载入数据库 u ...

  3. input radio单选框样式优化

    HTML代码: <form> <div> <input id="item1" type="radio" name="it ...

  4. fastclick select 闪退 bug

    这时候needsclick就派上用场了 <select class='needsclick'></select> 附上fastclick github上的链接

  5. .NET笔试题集(五)

    转载于:http://www.cnblogs.com/ForEvErNoME/archive/2012/09/15/2684938.html 1.什么是受管制的代码? 答:unsafe:非托管代码.不 ...

  6. 在Eclipse中运行Jboss时出现java.lang.OutOfMemoryError:PermGen space及其解决方法

    在Eclipse中运行Jboss时出现java.lang.OutOfMemoryError:PermGen space及其解决方法 在Eclipse中运行Jboss时,时间太长可能有时候会出现java ...

  7. Python2与python3中字符串的区别

    Python2 在python中包含两种字符串类型:str和unicode,str并不是完全意义上的字符串,其实是由unicode经过编码(encode)后的字节组成的字节字符串,而unicode则是 ...

  8. mysql5.7 误删管理员root账户

    1.停止数据库,并在mysql配置文件my.cnf中添加skip-grant-tables参数到[mysqld]配置块中 2. 执行 systemctl start mysqld 3. 执行 mysq ...

  9. DevExpress 使用条形码二维码控件打印

    参考文章: https://www.cnblogs.com/wuhuacong/p/6112976.html 转载请注明出处:撰写人:伍华聪 其实主要是二维码的实现,在使用条形码控件时,又一个属性Sy ...

  10. 【python】关于python中模块导入的总结

    precondition:比如我有如下这样的文件目录结构 说明:add和debug两个包都隶属于src目录,它们是同级目录,其中在add路径下有一个add.py的模块,里面定义了一个jiafa()的函 ...