分析:

构造法...每次找到一个没有被选过的数,用这个数推出一个表格,之后在表格上跑状压DP,时间复杂度O(n)

附上代码:

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
#define N 25
#define M 1<<11
#define mod 1000000001
int f[N][M],a[N][N],b[N],K,n,m,vis[1000005];
long long ans=1;
int calc(int t)
{
memset(b,0,sizeof(b));
a[1][1]=t;
for(int i=2;i<=18;i++)
{
a[i][1]=a[i-1][1]<<1;
if(a[i][1]>n)a[i][1]=n+1;
}
for(int i=1;i<=18;i++)
{
for(int j=2;j<=11;j++)
{
a[i][j]=a[i][j-1]*3;
if(a[i][j]>n)a[i][j]=n+1;
}
}
for(int i=1;i<=18;i++)
{
for(int j=1;j<=11;j++)
{
if(a[i][j]<=n)
{
b[i]+=(1<<(j-1));
vis[a[i][j]]=1;
}
}
}
for(int i=0;i<=18;i++)
{
for(int S=0;S<=b[i];S++)
{
f[i][S]=0;
}
}
f[0][0]=1;
for(int i=1;i<=18;i++)
{
for(int S=0;S<=b[i-1];S++)
{
if(!f[i-1][S])continue;
for(int s=0;s<=b[i];s++)
{
if((S&s)||(s&(s<<1)))continue;
f[i][s]=(f[i][s]+f[i-1][S])%mod;
}
}
}
return f[18][0];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
ans=(ans*calc(i))%mod;
}
}
printf("%lld\n",ans);
return 0;
}

  

[HNOI2012]集合选数 BZOJ2734的更多相关文章

  1. bzoj 2734: [HNOI2012]集合选数 状压DP

    2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status ...

  2. BZOJ_2734_[HNOI2012]集合选数_构造+状压DP

    BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...

  3. 2734: [HNOI2012]集合选数

    2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...

  4. [HNOI2012]集合选数 --- 状压DP

    [HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...

  5. BZOJ2734 HNOI2012集合选数(状压dp)

    完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...

  6. bzoj2734:[HNOI2012]集合选数(状压DP)

    菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...

  7. bzoj2734: [HNOI2012]集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

  8. [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)

    Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...

  9. 2734: [HNOI2012]集合选数 - BZOJ

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...

随机推荐

  1. ArcGIS三种方式打断相交线------Feature To Line工具

    有多个layer图层相交线时,选用”Feature To Line“工具,将多个图层相交线打断,然后合并成一个图层. (1)       选择工具栏”Geoprocessing“中的”ArcToolb ...

  2. 基于 WPF 平台的 ActiveReports Viewer控件

    ActiveReports 报表控件致力于为组织和个人提供最出色的报表解决方案,多年来ActiveReports已经提供了 Windows Forms.Web.Silverlight和Flash平台的 ...

  3. memset初始化数组的问题

    今天才搞清楚,memset用于初始化数组,仅能初始化为0值,而不能初始化一个特定的值,这怎么能模糊了呢??? 因此,如果对申请的一段存放数组的内存进行初始化,每个数组元素均初始化为特定的值,必须使用循 ...

  4. JS截取字符串方法实例

    // JS截取字符串可使用 substring()或者slice() // // 函数:substring() // 定义:substring(start,end)表示从start到end之间的字符串 ...

  5. 《Javascript权威指南-第6版》

    第3章 类型.值和变量 3.2 文本 3.2.1 字符串直接量 建议:在javascript中使用单引号表示字符串,在HTML中使用双引号表示字符串; 3.2.2 转义字符 \n 换行符 \r 回车符 ...

  6. 重学C语言---05运算符、表达式和语句

    一.循环简介 实例程序 /*shoes1.c--把一双鞋的尺码变为英寸*/#include <stdio.h>#define ADJUST 7.64#define SCALE 0.325 ...

  7. C#中virtual(虚方法)的理解以及和abstract(抽象方法)的区别

    Virtual方法(虚方法) virtual 关键字用于在基类中修饰方法.virtual的使用会有两种情况: 情况1:在基类中定义了virtual方法,但在派生类中没有重写该虚方法.那么在对派生类实例 ...

  8. python自学——文件打开

    #文件的打开 新建一个文件new file.txt #方法一:f=open("yesterday","r",encoding="utf-8" ...

  9. C#读取AD域用户信息

    private const string domainName = "本机IP地址或域名"; private const string adAdmin = "管理员帐号& ...

  10. Redis学习---面试基础知识点总结

    [学习参考] https://www.toutiao.com/i6566017785078481422/ https://www.toutiao.com/i6563232898831352323/ 0 ...