Description

The professors of the Bayerische Mathematiker Verein have their annual party in the local Biergarten. They are sitting at a round table each with his own pint of beer. As a ceremony each professor raises his pint and toasts one of the other guests in such a way that no arms cross.



Figure 2: Toasting across a table with eight persons:no arms crossing(left), arms crossing(right)

We know that the professors like to toast with someone that is drinking the same brand of beer, and we like to maximize the number of pairs of professors toasting with the same brand , again without crossing arms. Write an algorithm to do this, keeping in mind that every professor should take part in the toasting.

Input

The frist line of the input contains a single number: the number of test cases to follow. Each test case has the following format:

One line with an even number p, satisfying 2 <= p <= 1000: the number of participants

One line with p integers (separated by single spaces) indicating the beer brands fro the consecutive professors( in clockwise order, starting at an arbitrary position). Each value is between 1 and 100 (boudaries included).

Output

For every test case in the input, the output should contain a single number on a single line: the maximum number of non-intersecting toasts of the same beer brand for this test case.

Sample Input

2
6
1 2 2 1 3 3
22
1 7 1 2 4 2 4 9 1 1 9 4 5 9 4 5 6 9 2 1 2 9

Sample Output

3
6
 
题意:有偶数个人,所有人都必须互相敬酒,而且不能交叉,问在这种情况下,互相敬酒的人牌子相同的最大对数
 
思路:又是一道比较简单的区间DP,要注意的是,所有人都必须敬酒,而且不能交叉,这种情况分区间解决即可
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int t,n,a[1005],dp[1005][1005],i,j,k,l; int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i = 1; i<=n; i++)
scanf("%d",&a[i]);
memset(dp,0,sizeof(dp));
for(l = 1; l<n; l+=2)//l代表是一个区间内头与尾的间距,因为不能交叉,所以两头尾之间相隔的的人数必须为0,2,4..等偶数
{
for(i = 1; i+l<=n; i++)
{
j = i+l;
dp[i][j] = dp[i+1][j-1];
if(a[i] == a[j])//头尾相等,对数加1
dp[i][j]++;
for(k = i+1; k<j; k+=2)//分割的区间也是同样道理
dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);
}
}
printf("%d\n",dp[1][n]);
} return 0;
}

POJ3056:The Bavarian Beer Party(区间DP)的更多相关文章

  1. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  3. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  4. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  5. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

随机推荐

  1. Java [Leetcode 40]Combination Sum II

    题目描述: Given a collection of candidate numbers (C) and a target number (T), find all unique combinati ...

  2. JPA简单知识

    ,JPA(Java Persistence API):通过注解或XML描述对象--关系表的映射关系,并将运行期的实体对象持久化到数据库中. JPA是一套规范,不是某个ORM产品,它主要包括以下3方面的 ...

  3. GIS:揭开你神秘的面纱

    转自:http://www.cnblogs.com/gisangela/archive/2013/02/20/2918884.html#!comments GIS从出现到为人所知,只不过经历了短短的几 ...

  4. 设计模式之Memento(备忘机制)

    Memento备望录模式定义:memento是一个保存另外一个对象内部状态拷贝的对象.这样以后就可以将该对象恢复到原先保存的状态. Memento模式相对也比较好理解,我们看下列代码: public ...

  5. 【Jenkins】linux下Jenkins集成ant进行编译并发送结果

    三个文章吧: 1 如何使用ant编译执行jmeter测试用例,并生成html报告 2 如何在Linux下搭建jenkins环境. 3 如何在Linux下搭建的jenkins中执行ant构建运行,并发送 ...

  6. Android选项卡TabHost方式实现

    1.布局XML: <?xml version="1.0" encoding="utf-8"?> <TabHost xmlns:android= ...

  7. UVA1673 str2int(SAM)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51267 [题意] 给定n个字符串,计算所有忽略前导0的子串形成 ...

  8. cocos2d-x的helloLua例子函数名定义误导初学者

    初次研究cocos2d-x, cocos2d-x支持lua是一个很不错的功能,使用lua来开发有个最大的好处就是不用每次改了游戏代码都编译,大多数情况下改了脚本直接运行程序就可以了,发布更新时也不用更 ...

  9. 委托学习续:Action、Func和Predicate

    我们先看一个上一章的委托的例子: using System; using System.Collections.Generic; using System.Linq; using System.Tex ...

  10. 智能电视TV开发---客户端和服务器通信

    在做智能电视应用的时候,最头疼的就是焦点问题,特别是对于个人开发者,没有设备这是最最头疼的事情了,在没有设备的情况下,怎么实现智能电视应用呢,接下来我是用TV程序来做演示的,所以接下来的所有操作是在有 ...