状态转移方程在代码中标出

本题注意是圆形,所以之前要预先处理一下s数组。处理之后总长度为2*n-1.第一个合并的起点有n个,所以总的方案数是n

注释在代码中标出

http://www.rqnoj.cn/problem/490

石子合并问题推荐几篇很好的文章

http://blog.csdn.net/acdreamers/article/details/18039073

http://blog.csdn.net/bnmjmz/article/details/41308919

注意四边形不等式优化,可以把n^3优化到n^2

 //#pragma comment(linker, "/STACK:167772160")//手动扩栈~~~~hdu 用c++交
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<queue>
#include<stack>
#include<cmath>
#include<set>
#include<algorithm>
#include<vector>
// #include<malloc.h>
using namespace std;
#define clc(a,b) memset(a,b,sizeof(a))
#define LL long long
const int Inf = 0x3f3f3f3f;
const double eps = 1e-;
const double pi = acos(-);
// inline int r(){
// int x=0,f=1;char ch=getchar();
// while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
// while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
// return x*f;
// }
const int Times = ;
const int N = ;
int s[],d[][],p[][],a[];//d/p表示i到j的最小/大花费
int main(){
int n;
int m;
s[]=;
while(~scanf("%d",&n)){
clc(d,);
clc(p,);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
s[i]=s[i-]+a[i];
}
for(int i=;i<n;i++){
s[i+n]=s[n+i-]+a[i];
}
m=n,n=n*-;
int j,tem1,tem2;
for(int r=;r<=n;r++){//枚举i到j的长度
for(int i=;i<=n-r+;i++){//i起始坐标,j表示当前枚举的终点坐标
j=i+r-,tem1=Inf,tem2=;
for(int k=i;k<j;k++){
tem1=min(tem1,d[i][k]+d[k+][j]+s[j]-s[i-]);
tem2=max(tem2,p[i][k]+p[k+][j]+s[j]-s[i-]);
}
d[i][j]=tem1;
p[i][j]=tem2;
}
}
tem1=Inf,tem2=;
for(int i=;i<=m;i++){//合并长度从1到m
if(tem1>d[i][m+i-]) tem1=d[i][m+i-];
if(tem2<p[i][m+i-]) tem2=p[i][m+i-];
}
if(n==) tem1=tem2=a[];
printf("%d\n%d\n",tem1,tem2);
}
return ;
}

NIOP1995 石子合并(区间DP)的更多相关文章

  1. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  2. 石子合并 区间dp模板

    题意:中文题 Description 在操场上沿一直线排列着 n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.允许在第一次合 ...

  3. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  4. 石子合并 区间DP模板题

    题目链接:https://vjudge.net/problem/51Nod-1021 题意 N堆石子摆成一条线.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石 ...

  5. 洛谷 P1080 石子合并 ( 区间DP )

    题意 : 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.试设计出1个算法,计算出将N堆石子合并成1堆 ...

  6. 石子合并——区间dp

    石子合并(3种变形) <1> 题目: 有N堆石子排成一排(n<=100),现要将石子有次序地合并成一堆,规定每次只能选相邻的两堆合并成一堆,并将新的一堆的石子数,记为改次合并的得分, ...

  7. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  8. HRBUST - 1818 石子合并 区间dp入门

    有点理解了进阶指南上说的”阶段,状态和决策“ /* 区间dp的基础题: 以区间长度[2,n]为阶段,枚举该长度的区间,状态dp[l][r]表示合并区间[l,r]的最小费用 状态转移方程dp[l][r] ...

  9. HDU 3506 (环形石子合并)区间dp+四边形优化

    Monkey Party Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Tot ...

  10. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

随机推荐

  1. 给QT不规则窗口添加阴影

    在家休息,试着用QT去模仿各类管家软件的界面,做到自绘阴影的时候,蛋疼了. 网上搜到的基本都是一篇文章转来转去,一开始也被思路限制了. 尝试重载paintEvent,然后自己绘制矩形阴影,但是绘制的算 ...

  2. 扫盲Linq知识

    LINQ,语言集成查询(Language Integrated Query),是在.NET Framework 3.5 中出现的技术. 借助于LINQ技术,我们可以使用一种类似SQL的语法来查询任何形 ...

  3. 【win8技巧】去掉Win8导航菜单下面的这台电脑其他的文件夹

    win8 删除 上传 下载 这台电脑 左侧导航 另存为中的 视频.图片.文档.下载的方法!落雨 win8 Windows 8.1  默认将视频.图片.文档.下载.音乐.桌面等常用文件夹也显示在其中了, ...

  4. POJ2528+线段树

    见代码. /* 线段树+Lazy 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度. 现在往墙上贴N张海报,每张海报的宽度是任意的,但是必定是单位宽度的整数倍,且<=1QW. 后贴的海 ...

  5. tomcat 禁止某些文件(夹)的访问

    tomcat 禁止某些文件(夹)的访问 <!-- 不允许访问的文件以及文件夹 --> <security-constraint> <display-name>Tom ...

  6. 【转】notepad++ 应用学习 -- 列模式,十六进制模式

      Notepad++ 顾名思义,是一个比notepad(Windows下叫记事本)的功能更强的编辑器. 总以为notepad++小巧轻盈,而且开源,要比UE(UltraEdit)好用.因为她支持的视 ...

  7. CF196 D2 D

    Book of Evil,有一颗树,n个节点,有m个节点被标记,问n个节点中,有多少个节点,这些节点与这m个节点的最远的距离小于等于d. 用down[i], up[i]分别标记只考虑以i为root的子 ...

  8. 最短路径算法之二——Dijkstra算法

    Dijkstra算法 Dijkstra算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 注意该算法要求图中不存在负权边. 首先我们来定义一个二维数组Edge[MAXN][MAXN]来存储 ...

  9. 如何修改linux系统主机名称

    完成目标: 修改centos 7系统的主机名称 使用命令: hostnamectl [root@ossec-server ~]# hostnamectl --help hostnamectl [OPT ...

  10. Ubuntu 12.04上编译Vim7.4的时候遇到“no terminal library found”问题

    错误如下: no terminal library foundchecking for tgetent()... configure: error: NOT FOUND!      You need ...