The Hundred Greatest Theorems
The Hundred Greatest Theorems
The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."
The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.
1 |
The Irrationality of the Square Root of 2 |
Pythagoras and his school |
500 B.C. |
2 |
Fundamental Theorem of Algebra |
Karl Frederich Gauss |
1799 |
3 |
The Denumerability of the Rational Numbers |
Georg Cantor |
1867 |
4 |
Pythagorean Theorem |
Pythagoras and his school |
500 B.C. |
5 |
Prime Number Theorem |
Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately) |
1896 |
6 |
Godel’s Incompleteness Theorem |
Kurt Godel |
1931 |
7 |
Law of Quadratic Reciprocity |
Karl Frederich Gauss |
1801 |
8 |
The Impossibility of Trisecting the Angle and Doubling the Cube |
Pierre Wantzel |
1837 |
9 |
The Area of a Circle |
Archimedes |
225 B.C. |
10 |
Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) |
Leonhard Euler (Pierre de Fermat) |
1760 (1640) |
11 |
The Infinitude of Primes |
Euclid |
300 B.C. |
12 |
The Independence of the Parallel Postulate |
Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively |
1870-1880 |
13 |
Polyhedron Formula |
Leonhard Euler |
1751 |
14 |
Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. |
Leonhard Euler |
1734 |
15 |
Fundamental Theorem of Integral Calculus |
Gottfried Wilhelm von Leibniz |
1686 |
16 |
Insolvability of General Higher Degree Equations |
Niels Henrik Abel |
1824 |
17 |
DeMoivre’s Theorem |
Abraham DeMoivre |
1730 |
18 |
Liouville’s Theorem and the Construction of Trancendental Numbers |
Joseph Liouville |
1844 |
19 |
Four Squares Theorem |
Joseph-Louis Lagrange |
1770 |
20 |
All Primes Equal the Sum of Two Squares |
? |
? |
21 |
Green’s Theorem |
George Green |
1828 |
22 |
The Non-Denumerability of the Continuum |
Georg Cantor |
1874 |
23 |
Formula for Pythagorean Triples |
Euclid |
300 B.C. |
24 |
The Undecidability of the Coninuum Hypothesis |
Paul Cohen |
1963 |
25 |
Schroeder-Bernstein Theorem |
? |
? |
26 |
Leibnitz’s Series for Pi |
Gottfried Wilhelm von Leibniz |
1674 |
27 |
Sum of the Angles of a Triangle |
Euclid |
300 B.C. |
28 |
Pascal’s Hexagon Theorem |
Blaise Pascal |
1640 |
29 |
Feuerbach’s Theorem |
Karl Wilhelm Feuerbach |
1822 |
30 |
The Ballot Problem |
J.L.F. Bertrand |
1887 |
31 |
Ramsey’s Theorem |
F.P. Ramsey |
1930 |
32 |
The Four Color Problem |
Kenneth Appel and Wolfgang Haken |
1976 |
33 |
Fermat’s Last Theorem |
Andrew Wiles |
1993 |
34 |
Divergence of the Harmonic Series |
Nicole Oresme |
1350 |
35 |
Taylor’s Theorem |
Brook Taylor |
1715 |
36 |
Brouwer Fixed Point Theorem |
L.E.J. Brouwer |
1910 |
37 |
The Solution of a Cubic |
Scipione Del Ferro |
1500 |
38 |
Arithmetic Mean/Geometric Mean (Proof by Backward Induction) (Polya Proof) |
Augustin-Louis Cauchy George Polya |
? ? |
39 |
Solutions to Pell’s Equation |
Leonhard Euler |
1759 |
40 |
Minkowski’s Fundamental Theorem |
Hermann Minkowski |
1896 |
41 |
Puiseux’s Theorem |
Victor Puiseux (based on a discovery of Isaac Newton of 1671) |
1850 |
42 |
Sum of the Reciprocals of the Triangular Numbers |
Gottfried Wilhelm von Leibniz |
1672 |
43 |
The Isoperimetric Theorem |
Jacob Steiner |
1838 |
44 |
The Binomial Theorem |
Isaac Newton |
1665 |
45 |
The Partition Theorem |
Leonhard Euler |
1740 |
46 |
The Solution of the General Quartic Equation |
Lodovico Ferrari |
1545 |
47 |
The Central Limit Theorem |
? |
? |
48 |
Dirichlet’s Theorem |
Peter Lejune Dirichlet |
1837 |
49 |
The Cayley-Hamilton Thoerem |
Arthur Cayley |
1858 |
50 |
The Number of Platonic Solids |
Theaetetus |
400 B.C. |
51 |
Wilson’s Theorem |
Joseph-Louis Lagrange |
1773 |
52 |
The Number of Subsets of a Set |
? |
? |
53 |
Pi is Trancendental |
Ferdinand Lindemann |
1882 |
54 |
Konigsberg Bridges Problem |
Leonhard Euler |
1736 |
55 |
Product of Segments of Chords |
Euclid |
300 B.C. |
56 |
The Hermite-Lindemann Transcendence Theorem |
Ferdinand Lindemann |
1882 |
57 |
Heron’s Formula |
Heron of Alexandria |
75 |
58 |
Formula for the Number of Combinations |
? |
? |
59 |
The Laws of Large Numbers |
<many> |
<many> |
60 |
Bezout’s Theorem |
Etienne Bezout |
? |
61 |
Theorem of Ceva |
Giovanni Ceva |
1678 |
62 |
Fair Games Theorem |
? |
? |
63 |
Cantor’s Theorem |
Georg Cantor |
1891 |
64 |
L’Hopital’s Rule |
John Bernoulli |
1696? |
65 |
Isosceles Triangle Theorem |
Euclid |
300 B.C. |
66 |
Sum of a Geometric Series |
Archimedes |
260 B.C.? |
67 |
e is Transcendental |
Charles Hermite |
1873 |
68 |
Sum of an arithmetic series |
Babylonians |
1700 B.C. |
69 |
Greatest Common Divisor Algorithm |
Euclid |
300 B.C. |
70 |
The Perfect Number Theorem |
Euclid |
300 B.C. |
71 |
Order of a Subgroup |
Joseph-Louis Lagrange |
1802 |
72 |
Sylow’s Theorem |
Ludwig Sylow |
1870 |
73 |
Ascending or Descending Sequences |
Paul Erdos and G. Szekeres |
1935 |
74 |
The Principle of Mathematical Induction |
Levi ben Gerson |
1321 |
75 |
The Mean Value Theorem |
Augustine-Louis Cauchy |
1823 |
76 |
Fourier Series |
Joseph Fourier |
1811 |
77 |
Sum of kth powers |
Jakob Bernouilli |
1713 |
78 |
The Cauchy-Schwarz Inequality |
Augustine-Louis Cauchy |
1814? |
79 |
The Intermediate Value Theorem |
Augustine-Louis Cauchy |
1821 |
80 |
The Fundamental Theorem of Arithmetic |
Euclid |
300 B.C. |
81 |
Divergence of the Prime Reciprocal Series |
Leonhard Euler |
1734? |
82 |
Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) |
R.L. Brooks |
1940 |
83 |
The Friendship Theorem |
Paul Erdos, Alfred Renyi, Vera Sos |
1966 |
84 |
Morley’s Theorem |
Frank Morley |
1899 |
85 |
Divisibility by 3 Rule |
? |
? |
86 |
Lebesgue Measure and Integration |
Henri Lebesgue |
1902 |
87 |
Desargues’s Theorem |
Gerard Desargues |
1650 |
88 |
Derangements Formula |
? |
? |
89 |
The Factor and Remainder Theorems |
? |
? |
90 |
Stirling’s Formula |
James Stirling |
1730 |
91 |
The Triangle Inequality |
? |
? |
92 |
Pick’s Theorem |
George Pick |
1899 |
93 |
The Birthday Problem |
? |
? |
94 |
The Law of Cosines |
Francois Viete |
1579 |
95 |
Ptolemy’s Theorem |
Ptolemy |
120? |
96 |
Principle of Inclusion/Exclusion |
? |
? |
97 |
Cramer’s Rule |
Gabriel Cramer |
1750 |
98 |
Bertrand’s Postulate |
J.L.F. Bertrand |
1860? |
99 |
Buffon Needle Problem |
Comte de Buffon |
1733 |
100 |
Descartes Rule of Signs |
Rene Descartes |
1637 |
转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920
The Hundred Greatest Theorems的更多相关文章
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- HDU 4374 One hundred layer DP的单调队列优化
One hundred layer Problem Description Now there is a game called the new man down 100th floor. The ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
随机推荐
- lib库依赖解决
当前环境之前是装过MySQL官方版本5.6.22,想测试Percona版本MySQL.启动Percona-MySQL报错. [root@dg7 support-files]# /etc/init.d/ ...
- C#.Net 如何动态加载与卸载程序集(.dll或者.exe)3---- 动态加载Assembly应用程序
下载 supergraphfiles.exe 示例文件. 应用程序体系结构 在我专攻代码之前,我想谈谈我尝试做的事.您可能记得,SuperGraph 让您从函数列表中进行选择.我希望能够在具体的目录中 ...
- ExtJs双ActionResult共用同一Js文件ID冲突解决方案
项目使用MVC+ExtJs实现,权限控制是基于Controller下的ActionResult的,有一个页面因参数不同就需要新建两个ActionResult. 不要问我为何是基于页面级,而不是数据级, ...
- 将archlinux 2013-06-01版,安装配置为个人工作站
本文安装所使用的镜像为:archlinux-2013.06.01-dual.iso.首先请看看我安装完成之后的效果.图一,是第一个虚拟桌面及右键菜单图: 图二,是第二个虚拟桌面效果图.后几个虚拟桌面图 ...
- Hibernate事务与并发问题处理(乐观锁与悲观锁)
目录 一.数据库事务的定义 二.数据库事务并发可能带来的问题 三.数据库事务隔离级别 四.使用Hibernate设置数据库隔离级别 五.使用悲观锁解决事务并发问题 六.使用乐观锁解决事务并发问题 Hi ...
- HTTP编程(六)
此为网络编程的一个系列,后续会把内容补上.....
- Java [leetcode 21]Merge Two Sorted Lists
题目描述: Merge two sorted linked lists and return it as a new list. The new list should be made by spli ...
- c#编程指南(四) 组元(Tuple)
(1).C#语法中一个个问号(?)的运算符是指:可以为 null 的类型. MSDN上面的解释: 在处理数据库和其他包含不可赋值的元素的数据类型时,将 null 赋值给数值类型或布尔型以及日期类型的功 ...
- SQL Server 2008 R2主数据服务安装
SQL Server 2008 R2的主数据服务(Master Data Services,简称MDS)已经放出,目前是CTP版本,微软提供了下载地址: http://www.microsoft.co ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing ...