The Hundred Greatest Theorems

The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."

The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.

1

The Irrationality of the Square Root of 2

Pythagoras and his school

500 B.C.

2

Fundamental Theorem of Algebra

Karl Frederich Gauss

1799

3

The Denumerability of the Rational Numbers

Georg Cantor

1867

4

Pythagorean Theorem

Pythagoras and his school

500 B.C.

5

Prime Number Theorem

Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately)

1896

6

Godel’s Incompleteness Theorem

Kurt Godel

1931

7

Law of Quadratic Reciprocity

Karl Frederich Gauss

1801

8

The Impossibility of Trisecting the Angle and Doubling the Cube

Pierre Wantzel

1837

9

The Area of a Circle

Archimedes

225 B.C.

10

Euler’s Generalization of Fermat’s Little Theorem

(Fermat’s Little Theorem)

Leonhard Euler

(Pierre de Fermat)

1760

(1640)

11

The Infinitude of Primes

Euclid

300 B.C.

12

The Independence of the Parallel Postulate

Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively

1870-1880

13

Polyhedron Formula

Leonhard Euler

1751

14

Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + ….

Leonhard Euler

1734

15

Fundamental Theorem of Integral Calculus

Gottfried Wilhelm von Leibniz

1686

16

Insolvability of General Higher Degree Equations

Niels Henrik Abel

1824

17

DeMoivre’s Theorem

Abraham DeMoivre

1730

18

Liouville’s Theorem and the Construction of Trancendental Numbers

Joseph Liouville

1844

19

Four Squares Theorem

Joseph-Louis Lagrange

1770

20

All Primes Equal the Sum of Two Squares

?

?

21

Green’s Theorem

George Green

1828

22

The Non-Denumerability of the Continuum

Georg Cantor

1874

23

Formula for Pythagorean Triples

Euclid

300 B.C.

24

The Undecidability of the Coninuum Hypothesis

Paul Cohen

1963

25

Schroeder-Bernstein Theorem

?

?

26

Leibnitz’s Series for Pi

Gottfried Wilhelm von Leibniz

1674

27

Sum of the Angles of a Triangle

Euclid

300 B.C.

28

Pascal’s Hexagon Theorem

Blaise Pascal

1640

29

Feuerbach’s Theorem

Karl Wilhelm Feuerbach

1822

30

The Ballot Problem

J.L.F. Bertrand

1887

31

Ramsey’s Theorem

F.P. Ramsey

1930

32

The Four Color Problem

Kenneth Appel and Wolfgang Haken

1976

33

Fermat’s Last Theorem

Andrew Wiles

1993

34

Divergence of the Harmonic Series

Nicole Oresme

1350

35

Taylor’s Theorem

Brook Taylor

1715

36

Brouwer Fixed Point Theorem

L.E.J. Brouwer

1910

37

The Solution of a Cubic

Scipione Del Ferro

1500

38

Arithmetic Mean/Geometric Mean

(Proof by Backward Induction)

(Polya Proof)

Augustin-Louis Cauchy

George Polya

?

?

39

Solutions to Pell’s Equation

Leonhard Euler

1759

40

Minkowski’s Fundamental Theorem

Hermann Minkowski

1896

41

Puiseux’s Theorem

Victor Puiseux (based on a discovery of Isaac Newton of 1671)

1850

42

Sum of the Reciprocals of the Triangular Numbers

Gottfried Wilhelm von Leibniz

1672

43

The Isoperimetric Theorem

Jacob Steiner

1838

44

The Binomial Theorem

Isaac Newton

1665

45

The Partition Theorem

Leonhard Euler

1740

46

The Solution of the General Quartic Equation

Lodovico Ferrari

1545

47

The Central Limit Theorem

?

?

48

Dirichlet’s Theorem

Peter Lejune Dirichlet

1837

49

The Cayley-Hamilton Thoerem

Arthur Cayley

1858

50

The Number of Platonic Solids

Theaetetus

400 B.C.

51

Wilson’s Theorem

Joseph-Louis Lagrange

1773

52

The Number of Subsets of a Set

?

?

53

Pi is Trancendental

Ferdinand Lindemann

1882

54

Konigsberg Bridges Problem

Leonhard Euler

1736

55

Product of Segments of Chords

Euclid

300 B.C.

56

The Hermite-Lindemann Transcendence Theorem

Ferdinand Lindemann

1882

57

Heron’s Formula

Heron of Alexandria

75

58

Formula for the Number of Combinations

?

?

59

The Laws of Large Numbers

<many>

<many>

60

Bezout’s Theorem

Etienne Bezout

?

61

Theorem of Ceva

Giovanni Ceva

1678

62

Fair Games Theorem

?

?

63

Cantor’s Theorem

Georg Cantor

1891

64

L’Hopital’s Rule

John Bernoulli

1696?

65

Isosceles Triangle Theorem

Euclid

300 B.C.

66

Sum of a Geometric Series

Archimedes

260 B.C.?

67

e is Transcendental

Charles Hermite

1873

68

Sum of an arithmetic series

Babylonians

1700 B.C.

69

Greatest Common Divisor Algorithm

Euclid

300 B.C.

70

The Perfect Number Theorem

Euclid

300 B.C.

71

Order of a Subgroup

Joseph-Louis Lagrange

1802

72

Sylow’s Theorem

Ludwig Sylow

1870

73

Ascending or Descending Sequences

Paul Erdos and G. Szekeres

1935

74

The Principle of Mathematical Induction

Levi ben Gerson

1321

75

The Mean Value Theorem

Augustine-Louis Cauchy

1823

76

Fourier Series

Joseph Fourier

1811

77

Sum of kth powers

Jakob Bernouilli

1713

78

The Cauchy-Schwarz Inequality

Augustine-Louis Cauchy

1814?

79

The Intermediate Value Theorem

Augustine-Louis Cauchy

1821

80

The Fundamental Theorem of Arithmetic

Euclid

300 B.C.

81

Divergence of the Prime Reciprocal Series

Leonhard Euler

1734?

82

Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof)

R.L. Brooks

1940

83

The Friendship Theorem

Paul Erdos, Alfred Renyi, Vera Sos

1966

84

Morley’s Theorem

Frank Morley

1899

85

Divisibility by 3 Rule

?

?

86

Lebesgue Measure and Integration

Henri Lebesgue

1902

87

Desargues’s Theorem

Gerard Desargues

1650

88

Derangements Formula

?

?

89

The Factor and Remainder Theorems

?

?

90

Stirling’s Formula

James Stirling

1730

91

The Triangle Inequality

?

?

92

Pick’s Theorem

George Pick

1899

93

The Birthday Problem

?

?

94

The Law of Cosines

Francois Viete

1579

95

Ptolemy’s Theorem

Ptolemy

120?

96

Principle of Inclusion/Exclusion

?

?

97

Cramer’s Rule

Gabriel Cramer

1750

98

Bertrand’s Postulate

J.L.F. Bertrand

1860?

99

Buffon Needle Problem

Comte de Buffon

1733

100

Descartes Rule of Signs

Rene Descartes

1637

转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920

The Hundred Greatest Theorems的更多相关文章

  1. 素数与素性测试(Miller-Rabin测试)

    转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...

  2. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  3. HDU 4374 One hundred layer DP的单调队列优化

    One hundred layer Problem Description   Now there is a game called the new man down 100th floor. The ...

  4. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  5. orale内置函数COALESCE和GREATEST和LEAST

    1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...

  6. SDUT2157——Greatest Number(STL二分查找)

    Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...

  7. POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...

  8. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  9. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

随机推荐

  1. matlab 怎么保存plot的图 到指定文件夹

    %%使用print函数,第一个参数一定是figure的句柄,第二个参数设置格式,第三个参数是指定文件夹 %代码如下 h=figure; plot(1:10); print(h,'-djpeg','F: ...

  2. CodeWars题目筛选

    http://www.codewars.com/kata/search/csharp?q=&r%5B%5D=-8&xids=completed&beta=false 语言选择C ...

  3. sublime text2卸载和重新安装

    很多同学使用 sublime text2 的时候,出现一些奇怪的bug,且重启无法修复. 于是,就会想到卸载 sublime text2 再重新安装. 然而,你会发现,重新安装后,这个bug任然存在, ...

  4. C++ 空类默认产生成员函数

    class Empty { Empty(){...} //默认构造函数 ~Empty(){...} //默认析构函数 Empty(const Empty&){...} //拷贝构造函数 Emp ...

  5. 1067. Disk Tree(字符串)

    1067 破题啊  写完发现理解错题意了 子目录下会有跟之前重名的 把输入的字符串存下来 排下序 然后依次找跟上面有没有重的 #include <iostream> #include< ...

  6. 深入理解Android内存管理原理(六)

    一般来说,程序使用内存的方式遵循先向操作系统申请一块内存,使用内存,使用完毕之后释放内存归还给操作系统.然而在传统的C/C++等要求显式释放内存的编程语言中,记得在合适的时候释放内存是一个很有难度的工 ...

  7. extends:类似于java中的继承特征,extends="struts-default"

    extends:类似于java中的继承特征,extends="struts-default"就是继承struts-default.xml,它里面定义了许多跳转类型.拦截器等一些常用 ...

  8. WindowsPhone8SDK重装后设计器加载异常的处理办法

    Close all running instances of Visual Studio 2012 start cmd.exe (as admin/elevated) cd /d %windir%\i ...

  9. UVa 201 Squares

    题意: 给出这样一个图,求一共有多少个大小不同或位置不同的正方形. 分析: 这种题一看就有思路,最开始的想法就是枚举正方形的位置,需要二重循环,枚举边长一重循环,判断是否为正方形又需要一重循环,复杂度 ...

  10. 三个流行MySQL分支的对比

    MySQL是历史上最受欢迎的免费开源程序之一.它是成千上万个网站的数据库骨干,并且可以将它(和Linux)作为过去10年里Internet呈指数级增长的一个有力证明. 那么,如果MySQL真的这么重要 ...