The Hundred Greatest Theorems
The Hundred Greatest Theorems
The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."
The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.
|
1 |
The Irrationality of the Square Root of 2 |
Pythagoras and his school |
500 B.C. |
|
2 |
Fundamental Theorem of Algebra |
Karl Frederich Gauss |
1799 |
|
3 |
The Denumerability of the Rational Numbers |
Georg Cantor |
1867 |
|
4 |
Pythagorean Theorem |
Pythagoras and his school |
500 B.C. |
|
5 |
Prime Number Theorem |
Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately) |
1896 |
|
6 |
Godel’s Incompleteness Theorem |
Kurt Godel |
1931 |
|
7 |
Law of Quadratic Reciprocity |
Karl Frederich Gauss |
1801 |
|
8 |
The Impossibility of Trisecting the Angle and Doubling the Cube |
Pierre Wantzel |
1837 |
|
9 |
The Area of a Circle |
Archimedes |
225 B.C. |
|
10 |
Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) |
Leonhard Euler (Pierre de Fermat) |
1760 (1640) |
|
11 |
The Infinitude of Primes |
Euclid |
300 B.C. |
|
12 |
The Independence of the Parallel Postulate |
Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively |
1870-1880 |
|
13 |
Polyhedron Formula |
Leonhard Euler |
1751 |
|
14 |
Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. |
Leonhard Euler |
1734 |
|
15 |
Fundamental Theorem of Integral Calculus |
Gottfried Wilhelm von Leibniz |
1686 |
|
16 |
Insolvability of General Higher Degree Equations |
Niels Henrik Abel |
1824 |
|
17 |
DeMoivre’s Theorem |
Abraham DeMoivre |
1730 |
|
18 |
Liouville’s Theorem and the Construction of Trancendental Numbers |
Joseph Liouville |
1844 |
|
19 |
Four Squares Theorem |
Joseph-Louis Lagrange |
1770 |
|
20 |
All Primes Equal the Sum of Two Squares |
? |
? |
|
21 |
Green’s Theorem |
George Green |
1828 |
|
22 |
The Non-Denumerability of the Continuum |
Georg Cantor |
1874 |
|
23 |
Formula for Pythagorean Triples |
Euclid |
300 B.C. |
|
24 |
The Undecidability of the Coninuum Hypothesis |
Paul Cohen |
1963 |
|
25 |
Schroeder-Bernstein Theorem |
? |
? |
|
26 |
Leibnitz’s Series for Pi |
Gottfried Wilhelm von Leibniz |
1674 |
|
27 |
Sum of the Angles of a Triangle |
Euclid |
300 B.C. |
|
28 |
Pascal’s Hexagon Theorem |
Blaise Pascal |
1640 |
|
29 |
Feuerbach’s Theorem |
Karl Wilhelm Feuerbach |
1822 |
|
30 |
The Ballot Problem |
J.L.F. Bertrand |
1887 |
|
31 |
Ramsey’s Theorem |
F.P. Ramsey |
1930 |
|
32 |
The Four Color Problem |
Kenneth Appel and Wolfgang Haken |
1976 |
|
33 |
Fermat’s Last Theorem |
Andrew Wiles |
1993 |
|
34 |
Divergence of the Harmonic Series |
Nicole Oresme |
1350 |
|
35 |
Taylor’s Theorem |
Brook Taylor |
1715 |
|
36 |
Brouwer Fixed Point Theorem |
L.E.J. Brouwer |
1910 |
|
37 |
The Solution of a Cubic |
Scipione Del Ferro |
1500 |
|
38 |
Arithmetic Mean/Geometric Mean (Proof by Backward Induction) (Polya Proof) |
Augustin-Louis Cauchy George Polya |
? ? |
|
39 |
Solutions to Pell’s Equation |
Leonhard Euler |
1759 |
|
40 |
Minkowski’s Fundamental Theorem |
Hermann Minkowski |
1896 |
|
41 |
Puiseux’s Theorem |
Victor Puiseux (based on a discovery of Isaac Newton of 1671) |
1850 |
|
42 |
Sum of the Reciprocals of the Triangular Numbers |
Gottfried Wilhelm von Leibniz |
1672 |
|
43 |
The Isoperimetric Theorem |
Jacob Steiner |
1838 |
|
44 |
The Binomial Theorem |
Isaac Newton |
1665 |
|
45 |
The Partition Theorem |
Leonhard Euler |
1740 |
|
46 |
The Solution of the General Quartic Equation |
Lodovico Ferrari |
1545 |
|
47 |
The Central Limit Theorem |
? |
? |
|
48 |
Dirichlet’s Theorem |
Peter Lejune Dirichlet |
1837 |
|
49 |
The Cayley-Hamilton Thoerem |
Arthur Cayley |
1858 |
|
50 |
The Number of Platonic Solids |
Theaetetus |
400 B.C. |
|
51 |
Wilson’s Theorem |
Joseph-Louis Lagrange |
1773 |
|
52 |
The Number of Subsets of a Set |
? |
? |
|
53 |
Pi is Trancendental |
Ferdinand Lindemann |
1882 |
|
54 |
Konigsberg Bridges Problem |
Leonhard Euler |
1736 |
|
55 |
Product of Segments of Chords |
Euclid |
300 B.C. |
|
56 |
The Hermite-Lindemann Transcendence Theorem |
Ferdinand Lindemann |
1882 |
|
57 |
Heron’s Formula |
Heron of Alexandria |
75 |
|
58 |
Formula for the Number of Combinations |
? |
? |
|
59 |
The Laws of Large Numbers |
<many> |
<many> |
|
60 |
Bezout’s Theorem |
Etienne Bezout |
? |
|
61 |
Theorem of Ceva |
Giovanni Ceva |
1678 |
|
62 |
Fair Games Theorem |
? |
? |
|
63 |
Cantor’s Theorem |
Georg Cantor |
1891 |
|
64 |
L’Hopital’s Rule |
John Bernoulli |
1696? |
|
65 |
Isosceles Triangle Theorem |
Euclid |
300 B.C. |
|
66 |
Sum of a Geometric Series |
Archimedes |
260 B.C.? |
|
67 |
e is Transcendental |
Charles Hermite |
1873 |
|
68 |
Sum of an arithmetic series |
Babylonians |
1700 B.C. |
|
69 |
Greatest Common Divisor Algorithm |
Euclid |
300 B.C. |
|
70 |
The Perfect Number Theorem |
Euclid |
300 B.C. |
|
71 |
Order of a Subgroup |
Joseph-Louis Lagrange |
1802 |
|
72 |
Sylow’s Theorem |
Ludwig Sylow |
1870 |
|
73 |
Ascending or Descending Sequences |
Paul Erdos and G. Szekeres |
1935 |
|
74 |
The Principle of Mathematical Induction |
Levi ben Gerson |
1321 |
|
75 |
The Mean Value Theorem |
Augustine-Louis Cauchy |
1823 |
|
76 |
Fourier Series |
Joseph Fourier |
1811 |
|
77 |
Sum of kth powers |
Jakob Bernouilli |
1713 |
|
78 |
The Cauchy-Schwarz Inequality |
Augustine-Louis Cauchy |
1814? |
|
79 |
The Intermediate Value Theorem |
Augustine-Louis Cauchy |
1821 |
|
80 |
The Fundamental Theorem of Arithmetic |
Euclid |
300 B.C. |
|
81 |
Divergence of the Prime Reciprocal Series |
Leonhard Euler |
1734? |
|
82 |
Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) |
R.L. Brooks |
1940 |
|
83 |
The Friendship Theorem |
Paul Erdos, Alfred Renyi, Vera Sos |
1966 |
|
84 |
Morley’s Theorem |
Frank Morley |
1899 |
|
85 |
Divisibility by 3 Rule |
? |
? |
|
86 |
Lebesgue Measure and Integration |
Henri Lebesgue |
1902 |
|
87 |
Desargues’s Theorem |
Gerard Desargues |
1650 |
|
88 |
Derangements Formula |
? |
? |
|
89 |
The Factor and Remainder Theorems |
? |
? |
|
90 |
Stirling’s Formula |
James Stirling |
1730 |
|
91 |
The Triangle Inequality |
? |
? |
|
92 |
Pick’s Theorem |
George Pick |
1899 |
|
93 |
The Birthday Problem |
? |
? |
|
94 |
The Law of Cosines |
Francois Viete |
1579 |
|
95 |
Ptolemy’s Theorem |
Ptolemy |
120? |
|
96 |
Principle of Inclusion/Exclusion |
? |
? |
|
97 |
Cramer’s Rule |
Gabriel Cramer |
1750 |
|
98 |
Bertrand’s Postulate |
J.L.F. Bertrand |
1860? |
|
99 |
Buffon Needle Problem |
Comte de Buffon |
1733 |
|
100 |
Descartes Rule of Signs |
Rene Descartes |
1637 |
转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920
The Hundred Greatest Theorems的更多相关文章
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- HDU 4374 One hundred layer DP的单调队列优化
One hundred layer Problem Description Now there is a game called the new man down 100th floor. The ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
随机推荐
- CSRF攻击[转]
一.CSRF是什么? CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:CSR ...
- Civil3D二次开发 启动Civil3D异常
用Com方式启动Civil3D时,经常会在第一次启动时出现各种异常. 1. RPC_E_CALL_REJECTED 0x80010001 被呼叫方拒绝接收呼叫 解决方案:外部程序通过COM启动Auto ...
- 关于ckeditor添加的class都会被清除掉的问题
在源码中输入ul,并且带有class,然后点击源码,到可视化界面 结果显示为aaa,再点看源码,查看HTML源代码 解决方法: 添加配置 config.allowedContent = true 这个 ...
- 用shell写个100以内的所有数字之和
#!/bin/bash i=2 while ((i<=100));do j=2 while ((j<=i/2));do if ((i%j==0));then break fi let j+ ...
- poj 2409 Let it Bead && poj 1286 Necklace of Beads(Polya定理)
题目:http://poj.org/problem?id=2409 题意:用k种不同的颜色给长度为n的项链染色 网上大神的题解: 1.旋转置换:一个有n个旋转置换,依次为旋转0,1,2,```n-1. ...
- compass和sass很好的两篇文章
Sass是一种"CSS预处理器",可以让CSS的开发变得简单和可维护.但是,只有搭配Compass,它才能显出真正的威力. 本文介绍Compass的用法.毫不夸张地说,学会了Com ...
- Oracle ORA-00119和ORA-00132的解决方案
今天在启动服务器上的ORACLE时遇到如下错误: SQL> startup; ORA-00119: invalid specification for system parameter LOCA ...
- Zabbix探索:网络设备监控2
在实现第一部分的简单监控的时候,在设置数据类型的时候设置成为了整数,结果: icmpping:这个没问题,只有0和1: icmppingloss:这个有问题,是百分比,其实是浮点数,单位是%: icm ...
- FZU 2125 简单的等式
Problem Description 现在有一个等式如下:x^2+s(x,m)x-n=0.其中s(x,m)表示把x写成m进制时,每个位数相加的和.现在,在给定n,m的情况下,求出满足等式的最小的正整 ...
- IE兼容性问题解决方案4--form表单在IE下重复提交
遇到过一种情况,点击提交按钮的时候,在IE下重复提交,而在其他浏览器下正常. 原因:button按钮不设置type时,在IE下被浏览器默认解析为type="submit",用js提 ...