The Hundred Greatest Theorems
The Hundred Greatest Theorems
The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."
The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.
|
1 |
The Irrationality of the Square Root of 2 |
Pythagoras and his school |
500 B.C. |
|
2 |
Fundamental Theorem of Algebra |
Karl Frederich Gauss |
1799 |
|
3 |
The Denumerability of the Rational Numbers |
Georg Cantor |
1867 |
|
4 |
Pythagorean Theorem |
Pythagoras and his school |
500 B.C. |
|
5 |
Prime Number Theorem |
Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately) |
1896 |
|
6 |
Godel’s Incompleteness Theorem |
Kurt Godel |
1931 |
|
7 |
Law of Quadratic Reciprocity |
Karl Frederich Gauss |
1801 |
|
8 |
The Impossibility of Trisecting the Angle and Doubling the Cube |
Pierre Wantzel |
1837 |
|
9 |
The Area of a Circle |
Archimedes |
225 B.C. |
|
10 |
Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) |
Leonhard Euler (Pierre de Fermat) |
1760 (1640) |
|
11 |
The Infinitude of Primes |
Euclid |
300 B.C. |
|
12 |
The Independence of the Parallel Postulate |
Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively |
1870-1880 |
|
13 |
Polyhedron Formula |
Leonhard Euler |
1751 |
|
14 |
Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. |
Leonhard Euler |
1734 |
|
15 |
Fundamental Theorem of Integral Calculus |
Gottfried Wilhelm von Leibniz |
1686 |
|
16 |
Insolvability of General Higher Degree Equations |
Niels Henrik Abel |
1824 |
|
17 |
DeMoivre’s Theorem |
Abraham DeMoivre |
1730 |
|
18 |
Liouville’s Theorem and the Construction of Trancendental Numbers |
Joseph Liouville |
1844 |
|
19 |
Four Squares Theorem |
Joseph-Louis Lagrange |
1770 |
|
20 |
All Primes Equal the Sum of Two Squares |
? |
? |
|
21 |
Green’s Theorem |
George Green |
1828 |
|
22 |
The Non-Denumerability of the Continuum |
Georg Cantor |
1874 |
|
23 |
Formula for Pythagorean Triples |
Euclid |
300 B.C. |
|
24 |
The Undecidability of the Coninuum Hypothesis |
Paul Cohen |
1963 |
|
25 |
Schroeder-Bernstein Theorem |
? |
? |
|
26 |
Leibnitz’s Series for Pi |
Gottfried Wilhelm von Leibniz |
1674 |
|
27 |
Sum of the Angles of a Triangle |
Euclid |
300 B.C. |
|
28 |
Pascal’s Hexagon Theorem |
Blaise Pascal |
1640 |
|
29 |
Feuerbach’s Theorem |
Karl Wilhelm Feuerbach |
1822 |
|
30 |
The Ballot Problem |
J.L.F. Bertrand |
1887 |
|
31 |
Ramsey’s Theorem |
F.P. Ramsey |
1930 |
|
32 |
The Four Color Problem |
Kenneth Appel and Wolfgang Haken |
1976 |
|
33 |
Fermat’s Last Theorem |
Andrew Wiles |
1993 |
|
34 |
Divergence of the Harmonic Series |
Nicole Oresme |
1350 |
|
35 |
Taylor’s Theorem |
Brook Taylor |
1715 |
|
36 |
Brouwer Fixed Point Theorem |
L.E.J. Brouwer |
1910 |
|
37 |
The Solution of a Cubic |
Scipione Del Ferro |
1500 |
|
38 |
Arithmetic Mean/Geometric Mean (Proof by Backward Induction) (Polya Proof) |
Augustin-Louis Cauchy George Polya |
? ? |
|
39 |
Solutions to Pell’s Equation |
Leonhard Euler |
1759 |
|
40 |
Minkowski’s Fundamental Theorem |
Hermann Minkowski |
1896 |
|
41 |
Puiseux’s Theorem |
Victor Puiseux (based on a discovery of Isaac Newton of 1671) |
1850 |
|
42 |
Sum of the Reciprocals of the Triangular Numbers |
Gottfried Wilhelm von Leibniz |
1672 |
|
43 |
The Isoperimetric Theorem |
Jacob Steiner |
1838 |
|
44 |
The Binomial Theorem |
Isaac Newton |
1665 |
|
45 |
The Partition Theorem |
Leonhard Euler |
1740 |
|
46 |
The Solution of the General Quartic Equation |
Lodovico Ferrari |
1545 |
|
47 |
The Central Limit Theorem |
? |
? |
|
48 |
Dirichlet’s Theorem |
Peter Lejune Dirichlet |
1837 |
|
49 |
The Cayley-Hamilton Thoerem |
Arthur Cayley |
1858 |
|
50 |
The Number of Platonic Solids |
Theaetetus |
400 B.C. |
|
51 |
Wilson’s Theorem |
Joseph-Louis Lagrange |
1773 |
|
52 |
The Number of Subsets of a Set |
? |
? |
|
53 |
Pi is Trancendental |
Ferdinand Lindemann |
1882 |
|
54 |
Konigsberg Bridges Problem |
Leonhard Euler |
1736 |
|
55 |
Product of Segments of Chords |
Euclid |
300 B.C. |
|
56 |
The Hermite-Lindemann Transcendence Theorem |
Ferdinand Lindemann |
1882 |
|
57 |
Heron’s Formula |
Heron of Alexandria |
75 |
|
58 |
Formula for the Number of Combinations |
? |
? |
|
59 |
The Laws of Large Numbers |
<many> |
<many> |
|
60 |
Bezout’s Theorem |
Etienne Bezout |
? |
|
61 |
Theorem of Ceva |
Giovanni Ceva |
1678 |
|
62 |
Fair Games Theorem |
? |
? |
|
63 |
Cantor’s Theorem |
Georg Cantor |
1891 |
|
64 |
L’Hopital’s Rule |
John Bernoulli |
1696? |
|
65 |
Isosceles Triangle Theorem |
Euclid |
300 B.C. |
|
66 |
Sum of a Geometric Series |
Archimedes |
260 B.C.? |
|
67 |
e is Transcendental |
Charles Hermite |
1873 |
|
68 |
Sum of an arithmetic series |
Babylonians |
1700 B.C. |
|
69 |
Greatest Common Divisor Algorithm |
Euclid |
300 B.C. |
|
70 |
The Perfect Number Theorem |
Euclid |
300 B.C. |
|
71 |
Order of a Subgroup |
Joseph-Louis Lagrange |
1802 |
|
72 |
Sylow’s Theorem |
Ludwig Sylow |
1870 |
|
73 |
Ascending or Descending Sequences |
Paul Erdos and G. Szekeres |
1935 |
|
74 |
The Principle of Mathematical Induction |
Levi ben Gerson |
1321 |
|
75 |
The Mean Value Theorem |
Augustine-Louis Cauchy |
1823 |
|
76 |
Fourier Series |
Joseph Fourier |
1811 |
|
77 |
Sum of kth powers |
Jakob Bernouilli |
1713 |
|
78 |
The Cauchy-Schwarz Inequality |
Augustine-Louis Cauchy |
1814? |
|
79 |
The Intermediate Value Theorem |
Augustine-Louis Cauchy |
1821 |
|
80 |
The Fundamental Theorem of Arithmetic |
Euclid |
300 B.C. |
|
81 |
Divergence of the Prime Reciprocal Series |
Leonhard Euler |
1734? |
|
82 |
Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) |
R.L. Brooks |
1940 |
|
83 |
The Friendship Theorem |
Paul Erdos, Alfred Renyi, Vera Sos |
1966 |
|
84 |
Morley’s Theorem |
Frank Morley |
1899 |
|
85 |
Divisibility by 3 Rule |
? |
? |
|
86 |
Lebesgue Measure and Integration |
Henri Lebesgue |
1902 |
|
87 |
Desargues’s Theorem |
Gerard Desargues |
1650 |
|
88 |
Derangements Formula |
? |
? |
|
89 |
The Factor and Remainder Theorems |
? |
? |
|
90 |
Stirling’s Formula |
James Stirling |
1730 |
|
91 |
The Triangle Inequality |
? |
? |
|
92 |
Pick’s Theorem |
George Pick |
1899 |
|
93 |
The Birthday Problem |
? |
? |
|
94 |
The Law of Cosines |
Francois Viete |
1579 |
|
95 |
Ptolemy’s Theorem |
Ptolemy |
120? |
|
96 |
Principle of Inclusion/Exclusion |
? |
? |
|
97 |
Cramer’s Rule |
Gabriel Cramer |
1750 |
|
98 |
Bertrand’s Postulate |
J.L.F. Bertrand |
1860? |
|
99 |
Buffon Needle Problem |
Comte de Buffon |
1733 |
|
100 |
Descartes Rule of Signs |
Rene Descartes |
1637 |
转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920
The Hundred Greatest Theorems的更多相关文章
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- HDU 4374 One hundred layer DP的单调队列优化
One hundred layer Problem Description Now there is a game called the new man down 100th floor. The ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
随机推荐
- Android安全问题 抢先拦截短信
同上篇文章一样,这里只陈述结果,代码分析稍后给出 导读:本文叙述如何先于某些伪杀毒软件.病毒.常规软件获取到短信 众所周知,android系统在收到短信息的时候会发送广播,但是此广播是有序广播,也就是 ...
- HTML5学习(四)---Canvas绘图
参考教程地址:http://www.w3school.com.cn/html5/html_5_canvas.asp canvas 元素用于在网页上绘制图形. 什么是 Canvas? HTML5 的 c ...
- js快速打印一个五分制(五颗星)的评分情况
1.函数 下面这个函数实现了在html页面中快速打印一个五分制(五颗星)的评分情况: function getRating(rating) { if(rating > 5 || rating & ...
- Android 内存管理(二)
很多开发者都是从j2me或j2ee上过来的,对于内存的使用和理解并不是很到位,Android开发网本次给大家一些架构上的指导,防止出现豆腐渣工 程的出现.Android作为以Java语言为主的智能平台 ...
- bzoj2456
有趣的题目 空间1mb,所以开数组的算法就不要想了(我一开始没看到……) 仔细读题,然后发现这里他限定众数为出现超过n div 2次 也就是说,这个数可以对应每一个不相同的数消掉,最终还剩下这个数 也 ...
- Windows如何安装自定义服务
系统:Windows8 开发环境:Visual Studio 2012 开发平台 .Net Framework 4.5 找到系统盘的 C:\Windows\Microsoft.NET\Framewor ...
- [2015编程之美] 资格赛C
#1150 : 基站选址 时间限制:2000ms 单点时限:1000ms 内存限制:256MB 描述 需要在一个N × M的网格中建立一个通讯基站,通讯基站仅必须建立在格点上. 网格中有A个用户,每个 ...
- I.MX6 driver goto 使用
/************************************************************************** * I.MX6 driver goto 使用 * ...
- Erlang入门(五)——补遗
暂时搞不到<Programming Erlang>,最近就一直在看Erlang自带的例子和Reference Manual.基础语法方面有一些过去遗漏或者没有注意的,断断续续仅记于此. 1 ...
- git提交小结
git有工作区和暂存区的概念,工作区就是可以看到文件目录的地方,暂存区则是提交代码的地方 第一步,进入文件工作目录,终端输入命令 $ dir1/dir2: 第二步,查看哪些文件已经修改,输入命令 $ ...