The Hundred Greatest Theorems
The Hundred Greatest Theorems
The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."
The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.
|
1 |
The Irrationality of the Square Root of 2 |
Pythagoras and his school |
500 B.C. |
|
2 |
Fundamental Theorem of Algebra |
Karl Frederich Gauss |
1799 |
|
3 |
The Denumerability of the Rational Numbers |
Georg Cantor |
1867 |
|
4 |
Pythagorean Theorem |
Pythagoras and his school |
500 B.C. |
|
5 |
Prime Number Theorem |
Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately) |
1896 |
|
6 |
Godel’s Incompleteness Theorem |
Kurt Godel |
1931 |
|
7 |
Law of Quadratic Reciprocity |
Karl Frederich Gauss |
1801 |
|
8 |
The Impossibility of Trisecting the Angle and Doubling the Cube |
Pierre Wantzel |
1837 |
|
9 |
The Area of a Circle |
Archimedes |
225 B.C. |
|
10 |
Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) |
Leonhard Euler (Pierre de Fermat) |
1760 (1640) |
|
11 |
The Infinitude of Primes |
Euclid |
300 B.C. |
|
12 |
The Independence of the Parallel Postulate |
Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively |
1870-1880 |
|
13 |
Polyhedron Formula |
Leonhard Euler |
1751 |
|
14 |
Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. |
Leonhard Euler |
1734 |
|
15 |
Fundamental Theorem of Integral Calculus |
Gottfried Wilhelm von Leibniz |
1686 |
|
16 |
Insolvability of General Higher Degree Equations |
Niels Henrik Abel |
1824 |
|
17 |
DeMoivre’s Theorem |
Abraham DeMoivre |
1730 |
|
18 |
Liouville’s Theorem and the Construction of Trancendental Numbers |
Joseph Liouville |
1844 |
|
19 |
Four Squares Theorem |
Joseph-Louis Lagrange |
1770 |
|
20 |
All Primes Equal the Sum of Two Squares |
? |
? |
|
21 |
Green’s Theorem |
George Green |
1828 |
|
22 |
The Non-Denumerability of the Continuum |
Georg Cantor |
1874 |
|
23 |
Formula for Pythagorean Triples |
Euclid |
300 B.C. |
|
24 |
The Undecidability of the Coninuum Hypothesis |
Paul Cohen |
1963 |
|
25 |
Schroeder-Bernstein Theorem |
? |
? |
|
26 |
Leibnitz’s Series for Pi |
Gottfried Wilhelm von Leibniz |
1674 |
|
27 |
Sum of the Angles of a Triangle |
Euclid |
300 B.C. |
|
28 |
Pascal’s Hexagon Theorem |
Blaise Pascal |
1640 |
|
29 |
Feuerbach’s Theorem |
Karl Wilhelm Feuerbach |
1822 |
|
30 |
The Ballot Problem |
J.L.F. Bertrand |
1887 |
|
31 |
Ramsey’s Theorem |
F.P. Ramsey |
1930 |
|
32 |
The Four Color Problem |
Kenneth Appel and Wolfgang Haken |
1976 |
|
33 |
Fermat’s Last Theorem |
Andrew Wiles |
1993 |
|
34 |
Divergence of the Harmonic Series |
Nicole Oresme |
1350 |
|
35 |
Taylor’s Theorem |
Brook Taylor |
1715 |
|
36 |
Brouwer Fixed Point Theorem |
L.E.J. Brouwer |
1910 |
|
37 |
The Solution of a Cubic |
Scipione Del Ferro |
1500 |
|
38 |
Arithmetic Mean/Geometric Mean (Proof by Backward Induction) (Polya Proof) |
Augustin-Louis Cauchy George Polya |
? ? |
|
39 |
Solutions to Pell’s Equation |
Leonhard Euler |
1759 |
|
40 |
Minkowski’s Fundamental Theorem |
Hermann Minkowski |
1896 |
|
41 |
Puiseux’s Theorem |
Victor Puiseux (based on a discovery of Isaac Newton of 1671) |
1850 |
|
42 |
Sum of the Reciprocals of the Triangular Numbers |
Gottfried Wilhelm von Leibniz |
1672 |
|
43 |
The Isoperimetric Theorem |
Jacob Steiner |
1838 |
|
44 |
The Binomial Theorem |
Isaac Newton |
1665 |
|
45 |
The Partition Theorem |
Leonhard Euler |
1740 |
|
46 |
The Solution of the General Quartic Equation |
Lodovico Ferrari |
1545 |
|
47 |
The Central Limit Theorem |
? |
? |
|
48 |
Dirichlet’s Theorem |
Peter Lejune Dirichlet |
1837 |
|
49 |
The Cayley-Hamilton Thoerem |
Arthur Cayley |
1858 |
|
50 |
The Number of Platonic Solids |
Theaetetus |
400 B.C. |
|
51 |
Wilson’s Theorem |
Joseph-Louis Lagrange |
1773 |
|
52 |
The Number of Subsets of a Set |
? |
? |
|
53 |
Pi is Trancendental |
Ferdinand Lindemann |
1882 |
|
54 |
Konigsberg Bridges Problem |
Leonhard Euler |
1736 |
|
55 |
Product of Segments of Chords |
Euclid |
300 B.C. |
|
56 |
The Hermite-Lindemann Transcendence Theorem |
Ferdinand Lindemann |
1882 |
|
57 |
Heron’s Formula |
Heron of Alexandria |
75 |
|
58 |
Formula for the Number of Combinations |
? |
? |
|
59 |
The Laws of Large Numbers |
<many> |
<many> |
|
60 |
Bezout’s Theorem |
Etienne Bezout |
? |
|
61 |
Theorem of Ceva |
Giovanni Ceva |
1678 |
|
62 |
Fair Games Theorem |
? |
? |
|
63 |
Cantor’s Theorem |
Georg Cantor |
1891 |
|
64 |
L’Hopital’s Rule |
John Bernoulli |
1696? |
|
65 |
Isosceles Triangle Theorem |
Euclid |
300 B.C. |
|
66 |
Sum of a Geometric Series |
Archimedes |
260 B.C.? |
|
67 |
e is Transcendental |
Charles Hermite |
1873 |
|
68 |
Sum of an arithmetic series |
Babylonians |
1700 B.C. |
|
69 |
Greatest Common Divisor Algorithm |
Euclid |
300 B.C. |
|
70 |
The Perfect Number Theorem |
Euclid |
300 B.C. |
|
71 |
Order of a Subgroup |
Joseph-Louis Lagrange |
1802 |
|
72 |
Sylow’s Theorem |
Ludwig Sylow |
1870 |
|
73 |
Ascending or Descending Sequences |
Paul Erdos and G. Szekeres |
1935 |
|
74 |
The Principle of Mathematical Induction |
Levi ben Gerson |
1321 |
|
75 |
The Mean Value Theorem |
Augustine-Louis Cauchy |
1823 |
|
76 |
Fourier Series |
Joseph Fourier |
1811 |
|
77 |
Sum of kth powers |
Jakob Bernouilli |
1713 |
|
78 |
The Cauchy-Schwarz Inequality |
Augustine-Louis Cauchy |
1814? |
|
79 |
The Intermediate Value Theorem |
Augustine-Louis Cauchy |
1821 |
|
80 |
The Fundamental Theorem of Arithmetic |
Euclid |
300 B.C. |
|
81 |
Divergence of the Prime Reciprocal Series |
Leonhard Euler |
1734? |
|
82 |
Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) |
R.L. Brooks |
1940 |
|
83 |
The Friendship Theorem |
Paul Erdos, Alfred Renyi, Vera Sos |
1966 |
|
84 |
Morley’s Theorem |
Frank Morley |
1899 |
|
85 |
Divisibility by 3 Rule |
? |
? |
|
86 |
Lebesgue Measure and Integration |
Henri Lebesgue |
1902 |
|
87 |
Desargues’s Theorem |
Gerard Desargues |
1650 |
|
88 |
Derangements Formula |
? |
? |
|
89 |
The Factor and Remainder Theorems |
? |
? |
|
90 |
Stirling’s Formula |
James Stirling |
1730 |
|
91 |
The Triangle Inequality |
? |
? |
|
92 |
Pick’s Theorem |
George Pick |
1899 |
|
93 |
The Birthday Problem |
? |
? |
|
94 |
The Law of Cosines |
Francois Viete |
1579 |
|
95 |
Ptolemy’s Theorem |
Ptolemy |
120? |
|
96 |
Principle of Inclusion/Exclusion |
? |
? |
|
97 |
Cramer’s Rule |
Gabriel Cramer |
1750 |
|
98 |
Bertrand’s Postulate |
J.L.F. Bertrand |
1860? |
|
99 |
Buffon Needle Problem |
Comte de Buffon |
1733 |
|
100 |
Descartes Rule of Signs |
Rene Descartes |
1637 |
转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920
The Hundred Greatest Theorems的更多相关文章
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- HDU 4374 One hundred layer DP的单调队列优化
One hundred layer Problem Description Now there is a game called the new man down 100th floor. The ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
随机推荐
- matlab 怎么保存plot的图 到指定文件夹
%%使用print函数,第一个参数一定是figure的句柄,第二个参数设置格式,第三个参数是指定文件夹 %代码如下 h=figure; plot(1:10); print(h,'-djpeg','F: ...
- CodeWars题目筛选
http://www.codewars.com/kata/search/csharp?q=&r%5B%5D=-8&xids=completed&beta=false 语言选择C ...
- sublime text2卸载和重新安装
很多同学使用 sublime text2 的时候,出现一些奇怪的bug,且重启无法修复. 于是,就会想到卸载 sublime text2 再重新安装. 然而,你会发现,重新安装后,这个bug任然存在, ...
- C++ 空类默认产生成员函数
class Empty { Empty(){...} //默认构造函数 ~Empty(){...} //默认析构函数 Empty(const Empty&){...} //拷贝构造函数 Emp ...
- 1067. Disk Tree(字符串)
1067 破题啊 写完发现理解错题意了 子目录下会有跟之前重名的 把输入的字符串存下来 排下序 然后依次找跟上面有没有重的 #include <iostream> #include< ...
- 深入理解Android内存管理原理(六)
一般来说,程序使用内存的方式遵循先向操作系统申请一块内存,使用内存,使用完毕之后释放内存归还给操作系统.然而在传统的C/C++等要求显式释放内存的编程语言中,记得在合适的时候释放内存是一个很有难度的工 ...
- extends:类似于java中的继承特征,extends="struts-default"
extends:类似于java中的继承特征,extends="struts-default"就是继承struts-default.xml,它里面定义了许多跳转类型.拦截器等一些常用 ...
- WindowsPhone8SDK重装后设计器加载异常的处理办法
Close all running instances of Visual Studio 2012 start cmd.exe (as admin/elevated) cd /d %windir%\i ...
- UVa 201 Squares
题意: 给出这样一个图,求一共有多少个大小不同或位置不同的正方形. 分析: 这种题一看就有思路,最开始的想法就是枚举正方形的位置,需要二重循环,枚举边长一重循环,判断是否为正方形又需要一重循环,复杂度 ...
- 三个流行MySQL分支的对比
MySQL是历史上最受欢迎的免费开源程序之一.它是成千上万个网站的数据库骨干,并且可以将它(和Linux)作为过去10年里Internet呈指数级增长的一个有力证明. 那么,如果MySQL真的这么重要 ...