The Hundred Greatest Theorems
The Hundred Greatest Theorems
The millenium seemed to spur a lot of people to compile "Top 100" or "Best 100" lists of many things, including movies (by the American Film Institute) and books (by the Modern Library). Mathematicians were not immune, and at a mathematics conference in July, 1999, Paul and Jack Abad presented their list of "The Hundred Greatest Theorems." Their ranking is based on the following criteria: "the place the theorem holds in the literature, the quality of the proof, and the unexpectedness of the result."
The list is of course as arbitrary as the movie and book list, but the theorems here are all certainly worthy results. I hope to over time include links to the proofs of them all; for now, you'll have to content yourself with the list itself and the biographies of the principals.
1 |
The Irrationality of the Square Root of 2 |
Pythagoras and his school |
500 B.C. |
2 |
Fundamental Theorem of Algebra |
Karl Frederich Gauss |
1799 |
3 |
The Denumerability of the Rational Numbers |
Georg Cantor |
1867 |
4 |
Pythagorean Theorem |
Pythagoras and his school |
500 B.C. |
5 |
Prime Number Theorem |
Jacques Hadamard and Charles-Jean de la Vallee Poussin(separately) |
1896 |
6 |
Godel’s Incompleteness Theorem |
Kurt Godel |
1931 |
7 |
Law of Quadratic Reciprocity |
Karl Frederich Gauss |
1801 |
8 |
The Impossibility of Trisecting the Angle and Doubling the Cube |
Pierre Wantzel |
1837 |
9 |
The Area of a Circle |
Archimedes |
225 B.C. |
10 |
Euler’s Generalization of Fermat’s Little Theorem (Fermat’s Little Theorem) |
Leonhard Euler (Pierre de Fermat) |
1760 (1640) |
11 |
The Infinitude of Primes |
Euclid |
300 B.C. |
12 |
The Independence of the Parallel Postulate |
Karl Frederich Gauss, Janos Bolyai, Nikolai Lobachevsky, G.F. Bernhard Riemann collectively |
1870-1880 |
13 |
Polyhedron Formula |
Leonhard Euler |
1751 |
14 |
Euler’s Summation of 1 + (1/2)^2 + (1/3)^2 + …. |
Leonhard Euler |
1734 |
15 |
Fundamental Theorem of Integral Calculus |
Gottfried Wilhelm von Leibniz |
1686 |
16 |
Insolvability of General Higher Degree Equations |
Niels Henrik Abel |
1824 |
17 |
DeMoivre’s Theorem |
Abraham DeMoivre |
1730 |
18 |
Liouville’s Theorem and the Construction of Trancendental Numbers |
Joseph Liouville |
1844 |
19 |
Four Squares Theorem |
Joseph-Louis Lagrange |
1770 |
20 |
All Primes Equal the Sum of Two Squares |
? |
? |
21 |
Green’s Theorem |
George Green |
1828 |
22 |
The Non-Denumerability of the Continuum |
Georg Cantor |
1874 |
23 |
Formula for Pythagorean Triples |
Euclid |
300 B.C. |
24 |
The Undecidability of the Coninuum Hypothesis |
Paul Cohen |
1963 |
25 |
Schroeder-Bernstein Theorem |
? |
? |
26 |
Leibnitz’s Series for Pi |
Gottfried Wilhelm von Leibniz |
1674 |
27 |
Sum of the Angles of a Triangle |
Euclid |
300 B.C. |
28 |
Pascal’s Hexagon Theorem |
Blaise Pascal |
1640 |
29 |
Feuerbach’s Theorem |
Karl Wilhelm Feuerbach |
1822 |
30 |
The Ballot Problem |
J.L.F. Bertrand |
1887 |
31 |
Ramsey’s Theorem |
F.P. Ramsey |
1930 |
32 |
The Four Color Problem |
Kenneth Appel and Wolfgang Haken |
1976 |
33 |
Fermat’s Last Theorem |
Andrew Wiles |
1993 |
34 |
Divergence of the Harmonic Series |
Nicole Oresme |
1350 |
35 |
Taylor’s Theorem |
Brook Taylor |
1715 |
36 |
Brouwer Fixed Point Theorem |
L.E.J. Brouwer |
1910 |
37 |
The Solution of a Cubic |
Scipione Del Ferro |
1500 |
38 |
Arithmetic Mean/Geometric Mean (Proof by Backward Induction) (Polya Proof) |
Augustin-Louis Cauchy George Polya |
? ? |
39 |
Solutions to Pell’s Equation |
Leonhard Euler |
1759 |
40 |
Minkowski’s Fundamental Theorem |
Hermann Minkowski |
1896 |
41 |
Puiseux’s Theorem |
Victor Puiseux (based on a discovery of Isaac Newton of 1671) |
1850 |
42 |
Sum of the Reciprocals of the Triangular Numbers |
Gottfried Wilhelm von Leibniz |
1672 |
43 |
The Isoperimetric Theorem |
Jacob Steiner |
1838 |
44 |
The Binomial Theorem |
Isaac Newton |
1665 |
45 |
The Partition Theorem |
Leonhard Euler |
1740 |
46 |
The Solution of the General Quartic Equation |
Lodovico Ferrari |
1545 |
47 |
The Central Limit Theorem |
? |
? |
48 |
Dirichlet’s Theorem |
Peter Lejune Dirichlet |
1837 |
49 |
The Cayley-Hamilton Thoerem |
Arthur Cayley |
1858 |
50 |
The Number of Platonic Solids |
Theaetetus |
400 B.C. |
51 |
Wilson’s Theorem |
Joseph-Louis Lagrange |
1773 |
52 |
The Number of Subsets of a Set |
? |
? |
53 |
Pi is Trancendental |
Ferdinand Lindemann |
1882 |
54 |
Konigsberg Bridges Problem |
Leonhard Euler |
1736 |
55 |
Product of Segments of Chords |
Euclid |
300 B.C. |
56 |
The Hermite-Lindemann Transcendence Theorem |
Ferdinand Lindemann |
1882 |
57 |
Heron’s Formula |
Heron of Alexandria |
75 |
58 |
Formula for the Number of Combinations |
? |
? |
59 |
The Laws of Large Numbers |
<many> |
<many> |
60 |
Bezout’s Theorem |
Etienne Bezout |
? |
61 |
Theorem of Ceva |
Giovanni Ceva |
1678 |
62 |
Fair Games Theorem |
? |
? |
63 |
Cantor’s Theorem |
Georg Cantor |
1891 |
64 |
L’Hopital’s Rule |
John Bernoulli |
1696? |
65 |
Isosceles Triangle Theorem |
Euclid |
300 B.C. |
66 |
Sum of a Geometric Series |
Archimedes |
260 B.C.? |
67 |
e is Transcendental |
Charles Hermite |
1873 |
68 |
Sum of an arithmetic series |
Babylonians |
1700 B.C. |
69 |
Greatest Common Divisor Algorithm |
Euclid |
300 B.C. |
70 |
The Perfect Number Theorem |
Euclid |
300 B.C. |
71 |
Order of a Subgroup |
Joseph-Louis Lagrange |
1802 |
72 |
Sylow’s Theorem |
Ludwig Sylow |
1870 |
73 |
Ascending or Descending Sequences |
Paul Erdos and G. Szekeres |
1935 |
74 |
The Principle of Mathematical Induction |
Levi ben Gerson |
1321 |
75 |
The Mean Value Theorem |
Augustine-Louis Cauchy |
1823 |
76 |
Fourier Series |
Joseph Fourier |
1811 |
77 |
Sum of kth powers |
Jakob Bernouilli |
1713 |
78 |
The Cauchy-Schwarz Inequality |
Augustine-Louis Cauchy |
1814? |
79 |
The Intermediate Value Theorem |
Augustine-Louis Cauchy |
1821 |
80 |
The Fundamental Theorem of Arithmetic |
Euclid |
300 B.C. |
81 |
Divergence of the Prime Reciprocal Series |
Leonhard Euler |
1734? |
82 |
Dissection of Cubes (J.E. Littlewood’s ‘elegant’ proof) |
R.L. Brooks |
1940 |
83 |
The Friendship Theorem |
Paul Erdos, Alfred Renyi, Vera Sos |
1966 |
84 |
Morley’s Theorem |
Frank Morley |
1899 |
85 |
Divisibility by 3 Rule |
? |
? |
86 |
Lebesgue Measure and Integration |
Henri Lebesgue |
1902 |
87 |
Desargues’s Theorem |
Gerard Desargues |
1650 |
88 |
Derangements Formula |
? |
? |
89 |
The Factor and Remainder Theorems |
? |
? |
90 |
Stirling’s Formula |
James Stirling |
1730 |
91 |
The Triangle Inequality |
? |
? |
92 |
Pick’s Theorem |
George Pick |
1899 |
93 |
The Birthday Problem |
? |
? |
94 |
The Law of Cosines |
Francois Viete |
1579 |
95 |
Ptolemy’s Theorem |
Ptolemy |
120? |
96 |
Principle of Inclusion/Exclusion |
? |
? |
97 |
Cramer’s Rule |
Gabriel Cramer |
1750 |
98 |
Bertrand’s Postulate |
J.L.F. Bertrand |
1860? |
99 |
Buffon Needle Problem |
Comte de Buffon |
1733 |
100 |
Descartes Rule of Signs |
Rene Descartes |
1637 |
转载自 http://www.math.org.cn/forum.php?mod=viewthread&tid=31920
The Hundred Greatest Theorems的更多相关文章
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- HDU 4374 One hundred layer DP的单调队列优化
One hundred layer Problem Description Now there is a game called the new man down 100th floor. The ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- orale内置函数COALESCE和GREATEST和LEAST
1. COALESCE 返回该表达式列表的第一个非空value. 格式: COALESCE(value1, value2, value3, ...) 含义: 返回value列表第一个非空的值. val ...
- SDUT2157——Greatest Number(STL二分查找)
Greatest Number 题目描述Saya likes math, because she think math can make her cleverer.One day, Kudo invi ...
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
随机推荐
- Civil3D二次开发 启动Civil3D异常
用Com方式启动Civil3D时,经常会在第一次启动时出现各种异常. 1. RPC_E_CALL_REJECTED 0x80010001 被呼叫方拒绝接收呼叫 解决方案:外部程序通过COM启动Auto ...
- CSS那些事儿-阅读随笔2(选择符的组合与优先级/权重)
在知道了CSS选择符最基础的知识后,就要综合利用它们了.这里就记录几种常见的用法. 1.针对性的使用类选择符或者ID选择符 类选择符在一个页面中可能会在不同的地方应用,那么就需要有针对性地使用类选择符 ...
- entity framework 查询
1.简单查询: SQL: SELECT * FROM [Clients] WHERE Type=1 AND Deleted=0 ORDER BY ID EF: //Func形式 var clients ...
- Java web 项目 tomcat部署方式.
本地做Java Web项目的时候常常会用到tomcat部署测试的问题, 这里介绍项目的部署方法: 1,配置文件的形式: 例如: 你的项目目录为:f:\workspaces\MyProject,此时使用 ...
- POJ 2318 (叉积) TOYS
题意: 有一个长方形,里面从左到右有n条线段,将矩形分成n+1个格子,编号从左到右为0~n. 端点分别在矩形的上下两条边上,这n条线段互不相交. 现在已知m个点,统计每个格子中点的个数. 分析: 用叉 ...
- Nginx SPDY缓冲区溢出漏洞
漏洞版本: nginx 1.3.15 nginx 1.5.x 漏洞描述: CVE ID:CVE-2014-0133 Nginx是HTTP及反向代理服务器,同时也用作邮件代理服务器,由Igor Syso ...
- HDU 3549 Flow Problem 流问题(最大流,入门)
题意:给个赤裸的最大流问题. 思路:EK+BFS解决.跟HDU1532几乎一样的. #include <bits/stdc++.h> #define LL long long #defin ...
- UVALive 3211 Now or later(2-SAT,二分,Kosaraju)
题意: 有n个飞机要降落,每机都可以在两个时间点上选择降落.但是两机的降落时间间隔太小会影响安全性,所以,要求两机的降落时间应该达到最大,当然也不能冲突了.问最大的时间间隔是多少?(其实问的是max( ...
- ☀Chrome模拟移动端浏览器
- 【 D3.js 进阶系列 】 进阶总结
进阶系列的文章从去年10月开始写的,晃眼又是4个多月了,想在年前总结一下. 首先恭祝大家新年快乐.今年是羊年吧.前段时间和朋友聊天,聊到十二生肖里为什么没猫,我张口就道:不是因为十二生肖开会的时候猫迟 ...