bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=3884
【题意】
求2^2^2… mod p
【思路】
设p=2^k * q+(1/0),使q为一个奇数
第二项如果是1,mod 1 为0可以忽略。
则我们求:
2^2^2… mod p
=2^k*(2^(2^2…-k) mod q)
因为q是奇数所以与2互质,根据欧拉定理:
a^phi(p) mod p=1,(a,p)=1
转化为:
2^k*(2^(2^2…mod phi(p) – k mod phi(p)))
对于前一项可以递归求解,子问题为solve(phi(p)),递归边界为p=1,此时返回0。
【代码】
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std; typedef long long ll;
const int N = 1e5+; ll pow(ll a,ll p,ll mod)
{
ll ans=;
while(p)
{
if(p&) ans=(ans*a)%mod;
a=(a*a)%mod; p>>=;
}
return ans;
}
ll phi(ll x)
{
ll ans=x;
for(int i=;i*i<=x;i++) if(x%i==)
{
ans=ans/i*(i-);
while(x%i==) x/=i;
}
if(x>) ans=ans/x*(x-);
return ans;
} int n,T,P; ll solve(ll p)
{
if(p==) return ;
int k=;
while(~p&) p>>=,k++;
ll pi=phi(p);
ll ans=solve(pi);
ans=(ans+pi-k%pi)%pi;
ans=pow(,ans,p)%p;
return ans<<k;
} int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&P);
printf("%lld\n",solve(P));
}
return ;
}
P.S.题解抄的PoPoQQQ的,自己又叙述了一遍而已
bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)的更多相关文章
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- 解题:BZOJ 3884 上帝与集合的正确用法
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
随机推荐
- 浅析CDN安全
目前CDN技术到处可见.像网宿.蓝讯.加速乐等都依靠CDN过活,连安全宝也都使用了CDN技术,当然很多域名空间商现在也提供CDN服务.从以往互联网的发展上看,CDN是个趋势,很多厂商也都多多少少购买了 ...
- 随机森林——Random Forests
[基础算法] Random Forests 2011 年 8 月 9 日 Random Forest(s),随机森林,又叫Random Trees[2][3],是一种由多棵决策树组合而成的联合预测模型 ...
- kail新手安装
Kali Linux下载链接:http://mirrors.ustc.edu.cn/kali-images/kali-2.0/ (ps:建议用国内镜像源下载,速度有保证) Kali Linux安装之后 ...
- 点(Dot)与像素(Pixel)的区别
DPI中的点(Dot)与图像分辨率中的像素(Pixel)是容易混淆的两个概念, DPI中的点可以说是硬件设备最小的显示单元, 而像素则既可是一个点,又可是多个点的集合.在扫描仪扫描图像时,扫描仪的每一 ...
- Android中使用Parcelable
今天 在两个Activity之间传集合类型数据,看了一下,要用Parcelable 所以就看一下东西: 下面一段话是复制网友的. Android序列化对象主要有两种方法,实现Serializable接 ...
- GET,POST,PUT,DELETE的区别
Http定义了与服务器交互的不同方法,最基本的方法有4种,分别是GET,POST,PUT,DELETE.URL全称是资源描述符,我们可以这样认为:一个URL地址,它用于描述一个网络上的资源,而HTTP ...
- UVa 12661 (单源最短路) Funny Car Racing
题意: 有一个赛车跑道,可以看做一个加权有向图.每个跑道(有向边)还有一个特点就是,会周期性地打开a秒,然后关闭b秒.只有在赛车进入一直到出来,该跑道一直处于打开状态,赛车才能通过. 开始时所有跑道处 ...
- Oracle 数据库整理表碎片
Oracle 数据库整理表碎片 转载:http://kyle.xlau.org/posts/table-fragmentation.html 表碎片的来源 当针对一个表的删除操作很多时,表会产生大量碎 ...
- mysql if 和 case when 用法 多个when情况用一个语句 存储过程
在实际开发中,经常会用到 if 和 case when的用法,记录一下,以后可以用得到. DELIMITER $$ USE `数据库`$$ DROPPROCEDUREIFEXISTS `GetNoti ...
- php服务器安装memcache
https://pecl.php.net/get/memcache-3.0.8.tgz wget https://pecl.php.net/get/memcache-3.0.8.tgzgzip -d ...