【题目链接】

http://www.lydsy.com/JudgeOnline/problem.php?id=3884

【题意】

求2^2^2… mod p

【思路】

设p=2^k * q+(1/0),使q为一个奇数

  第二项如果是1,mod 1 为0可以忽略。

则我们求:

2^2^2… mod p

=2^k*(2^(2^2…-k) mod q)

因为q是奇数所以与2互质,根据欧拉定理:

a^phi(p) mod p=1,(a,p)=1

转化为:

2^k*(2^(2^2…mod phi(p) – k mod phi(p)))

对于前一项可以递归求解,子问题为solve(phi(p)),递归边界为p=1,此时返回0。

【代码】

 #include<cmath>
#include<cstdio>
#include<cstring>
using namespace std; typedef long long ll;
const int N = 1e5+; ll pow(ll a,ll p,ll mod)
{
ll ans=;
while(p)
{
if(p&) ans=(ans*a)%mod;
a=(a*a)%mod; p>>=;
}
return ans;
}
ll phi(ll x)
{
ll ans=x;
for(int i=;i*i<=x;i++) if(x%i==)
{
ans=ans/i*(i-);
while(x%i==) x/=i;
}
if(x>) ans=ans/x*(x-);
return ans;
} int n,T,P; ll solve(ll p)
{
if(p==) return ;
int k=;
while(~p&) p>>=,k++;
ll pi=phi(p);
ll ans=solve(pi);
ans=(ans+pi-k%pi)%pi;
ans=pow(,ans,p)%p;
return ans<<k;
} int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&P);
printf("%lld\n",solve(P));
}
return ;
}

P.S.题解抄的PoPoQQQ的,自己又叙述了一遍而已

bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)的更多相关文章

  1. BZOJ3884 上帝与集合的正确用法(欧拉函数)

    设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...

  2. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  3. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  4. 【数学】[BZOJ 3884] 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...

  5. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  6. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  7. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  8. 解题:BZOJ 3884 上帝与集合的正确用法

    题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...

  9. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

随机推荐

  1. maven2 + tomcat6 + eclipse集成配置

    转载:http://wenku.baidu.com/view/d64147c676eeaeaad1f330d4.html?re=view /*maven2 + tomcat6 + eclipse集成配 ...

  2. java:类集框架

    类集框架:jdk提供的一系列类和接口,位于java.util包当中,主要用于存储和管理对象,主要分为三大类:集合.列表和映射. 集合Set:用于存储一系列对象的集合.无序.不允许重复元素. 列表Lis ...

  3. Intellij idea使用postgresql 反向生成实例, 'Basic' attribute type should not be 'Object'

    mapped type不能Object? 本人使用 intellij idea 15 , postgresql 9.4,在开发java ee . 在用 Hibernate时, 需要用数据库表反向生成实 ...

  4. liunx下tomcat启动报错

    liunx下tomcat启动 Cannot find ./catalina.sh 2013-08-23 11:50 1521人阅读 评论(0) 收藏 举报 Cannot find ./catalina ...

  5. swfupdate flash上传工具

    引用:http://baike.baidu.com/view/1332553.htm 下载地址:http://code.google.com/p/swfupload/ 什么是SWFUpload? SW ...

  6. 转:linux下Xampp安装与配置

    --转载时请保留下面,以供大家加我MSN,增强交流,共同学习.--姜庭华  msn: jaimejth@live.cn--博客:http://blog.csdn.net/jaimejth 软件下载在以 ...

  7. PHP程序员的40点陋习,我几乎全部中枪

    1.不写注释 2.不使用可以提高生产效率的IDE工具 3.不使用版本控制 4.不按照编程规范写代码 5.不使用统一的方法 6.编码前不去思考和计划 7.在执行sql前不执行编码和安全检测 8.不使用测 ...

  8. Android开发之获取系统管理权限,即DevicePolicyManager和DeviceAdminReceiver的使用

    参考:http://www.cnblogs.com/androidez/archive/2013/02/17/2915020.html 1.创建AdminReceiver,继承DeviceAdminR ...

  9. Android 面试题(经典)

    1.Actvity的生命周期,生命周期中的onCreate与onResume有什么区别 Activity的生命周期有:onCreate,onStart,onRestart,onResume,onPau ...

  10. Android加速度传感器实现“摇一摇”,带手机振动

    由于代码有点多,所以就分开写了,注释还算详细,方便学习 Activity package com.lmw.android.test;   import android.app.Activity; im ...