欢迎转载,尊重原创,所以转载请注明出处:

http://blog.csdn.net/bendanban/article/details/30527785

本文讲述了OpenCV中几种访问矩阵元素的方法,在指定平台上给出性能比较,分析每种矩阵元素访问方法的代码复杂度,易用性。

一、预备设置

本文假设你已经正确配置了OpenCV的环境,为方便大家实验,在文中也给出了编译源程序的Makefile,其内容如代码段1所示。

采用如代码段2所示的计时函数,这段代码你可以在我之前的博文中找到,abtic() 可以返回微秒(10^-6秒)级,而且兼容WindowsLinux系统。

本文使用彩色图像做实验,所以矩阵是2维的3通道的。

CC = g++
CPPFLAGS = -O3 `pkg-config --cflags opencv`
CPPLIB   = `pkg-config --libs opencv`

OBJS = test.o 

main.exe : $(OBJS)
  $(CC) $(CPPFLAGS) $^ -o $@ $(CPPLIB)

test.o: test.cpp
  $(CC) -c $(CPPFLAGS) $^ -o $@

clean:
  rm -rf *.out main.exe *.o

run:
  ./main.exe

代码段 1. Makefile文件的内容

#if defined(_WIN32) && defined(_MSC_VER)
#include <windows.h>
double abtic() {
  __int64 freq;
  __int64 clock;
  QueryPerformanceFrequency( (LARGE_INTEGER *)&freq );
  QueryPerformanceCounter( (LARGE_INTEGER *)&clock );
  return (double)clock/freq*1000*1000;
}
#else
#include <time.h>
#include <sys/time.h>
double abtic() {
  double result = 0.0;
  struct timeval tv;
  gettimeofday( &tv, NULL );
  result = tv.tv_sec*1000*1000 + tv.tv_usec;
  return result;
}
#endif /* _WIN32 */

代码段 2. 计时函数abtic()的定义

二、测试算法

文中用于测试的算法:将矩阵中每个元素乘以一个标量,写入一个新的矩阵,每个通道操作独立。

如果用im(r,c,k)表示矩阵im的第r行、第c列、第k个通道的值的话,算法为:om(r,c,k) = im(r,c,k)*scale;其中scale是一个大于0、小于1的浮点数。

三、五种Mat元素的访问方法

方法1、使用Mat的成员函数at<>()

    Mat的成员函数at()是一个模板函数,我们这里用的是二维矩阵,所以我们使用的at()函数的声明如代码段3所示(取自OpenCV的源文件)。

template<typename _Tp> _Tp& at(int i0, int i1);

代码段3 .at()函数的声明

代码段4是本文第二部分描述的算法的实现,矩阵元素使用at<>()函数来索引。

  Vec3b pix;
  for (int r = 0; r < im.rows; r++)
  {
    for (int c = 0; c < im.cols; c++)
    {
      pix = im.at<Vec3b>(r,c);
      pix = pix*scale;
      om.at<Vec3b>(r,c) = pix;
    }
  }

代码段4. 使用at<>()函数访问矩阵元素

注意:使用at函数时,应该知道矩阵元素的类型和通道数,根据矩阵元素类型和通道数来确定at函数传递的类型,代码段4中使用的是Vec3b这个元素类型,他是一个包含3个unsigned char类型向量。之所以采用这个类型来接受at的返回值,是因为,我们的矩阵im是3通道,类型为unsigned char类型的。

方法2、使用Mat的成员函数ptr<>()

此函数也是模板函数,我们将会用到的ptr函数声明如代码段5所示。此函数返回指定的数据行的首地址。

template<typename _Tp> _Tp* ptr(int i0=0);

代码段 5. ptr成员函数的声明

使用ptr<>()成员函数完成本文第二部分所述算法的代码如代码段6所示。

  Vec3b *ppix_im(NULL);
  Vec3b *ppix_om(NULL);
  for (int r = 0; r < im.rows; r++)
  {
    ppix_im = im.ptr<Vec3b>(r);
    ppix_om = om.ptr<Vec3b>(r);
    for (int c = 0; c < im.cols; c++)
    {
       ppix_om[c] = ppix_im[c]*scale;
    }
  }

代码段 6. 使用ptr访问矩阵元素

方法3、使用迭代器

这里使用的迭代器是OpenCV自己定义的。使用迭代器完成第二部分所述算法的代码如代码段7所示。

  MatIterator_<Vec3b> it_im, itEnd_im;
  MatIterator_<Vec3b> it_om;
  it_im    = im.begin<Vec3b>();
  itEnd_im = im.end<Vec3b>();
  it_om    = om.begin<Vec3b>();
  for (; it_im != itEnd_im; it_im++, it_om++)
  {
    *it_om = (*it_im)*scale;
  }

代码段 7. 使用迭代器访问矩阵元素

方法4、使用Mat_简化索引

Mat_这个类的元素访问比较容易一点,把原Mat类的对象可以直接赋值给Mat_对象,当然赋值操作并不会开辟新的数据空间,这点大家放心。也就是说使用Mat_时,不会在内存拷贝上花时间。使用这种方法完成第二部分所述算法的代码如代码段8所示。

  Mat_<Vec3b> im_, om_;
  im_ = im;
  om_ = om;
  for (int r = 0; r < im.rows; r++)
  {
    for (int c = 0; c < im.cols; c++)
    {
      om_(r,c) = im_(r,c) * scale;
    }
  }

代码段 8. 使用Mat_访问矩阵数据元素

方法5、使用OpenCV原有的实现

我们的算法实际上OpenCV中已经有实现。就是×运算符重载,代码如代码段9所示。

om = im*scale;

代码段 9. 使用OpenCV的原有实现访问矩阵元素

四、实验测试

1、测试代码

为了测试方便,将前面的方法统一写到一个c++源文件test.cpp中,其内容如代码段10所示。

/*************************************************************************
  > File Name: test.cpp
  > Author: aban
  > Mail: sawpara@126.com
  > Created Time: 2014年06月13日 星期五 18时47分19秒
 ************************************************************************/

#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

#if defined(_WIN32) && defined(_MSC_VER)
#include <windows.h>
double abtic() {
	__int64 freq;
	__int64 clock;
	QueryPerformanceFrequency( (LARGE_INTEGER *)&freq );
	QueryPerformanceCounter( (LARGE_INTEGER *)&clock );
	return (double)clock/freq*1000*1000;
}
#else
#include <time.h>
#include <sys/time.h>
double abtic() {
	double result = 0.0;
	struct timeval tv;
	gettimeofday( &tv, NULL );
	result = tv.tv_sec*1000*1000 + tv.tv_usec;
	return result;
}
#endif /* _WIN32 */

#define ISSHOW 0

int main(int argc, char** argv)
{
	double tRecorder(0.0);
	Mat im = imread("./bigim.tif");
	Mat om;
	om.create(im.rows, im.cols, CV_8UC3);

#if ISSHOW
	imshow("orignal Image", im);
	waitKey();
#endif

	float scale = 150.0f/255.0f;

	// 1. using at()
	tRecorder = abtic();
	Vec3b pix;
	for (int r = 0; r < im.rows; r++)
	{
		for (int c = 0; c < im.cols; c++)
		{
			pix = im.at<Vec3b>(r,c);
			pix = pix*scale;
			om.at<Vec3b>(r,c) = pix;
		}
	}
	cout << (abtic() - tRecorder) << " using at<>()" << endl;
#if ISSHOW
	imshow("Scaled Image: using at<>()", om);
	waitKey();
#endif

	// 2. using ptr
	tRecorder = abtic();
	Vec3b *ppix_im(NULL);
	Vec3b *ppix_om(NULL);
	for (int r = 0; r < im.rows; r++)
	{
		ppix_im = im.ptr<Vec3b>(r);
		ppix_om = om.ptr<Vec3b>(r);
		for (int c = 0; c < im.cols; c++)
		{
			 ppix_om[c] = ppix_im[c]*scale;
		}
	}
	cout << (abtic() - tRecorder) << " using ptr<>() " << endl;
#if ISSHOW
	imshow("Scaled Image: using ptr<>()", om);
	waitKey();
#endif

	// 3. using iterator
	tRecorder = abtic();
	MatIterator_<Vec3b> it_im, itEnd_im;
	MatIterator_<Vec3b> it_om;
	it_im    = im.begin<Vec3b>();
	itEnd_im = im.end<Vec3b>();
	it_om    = om.begin<Vec3b>();
	for (; it_im != itEnd_im; it_im++, it_om++)
	{
		*it_om = (*it_im)*scale;
	}
	cout << (abtic() - tRecorder) << " using iterator " << endl;
#if ISSHOW
	imshow("Scaled Image: using iterator", om);
	waitKey();
#endif

	// 4. using Mat_
	tRecorder = abtic();
	Mat_<Vec3b> im_, om_;
	im_ = im;
	om_ = om;
	for (int r = 0; r < im.rows; r++)
	{
		for (int c = 0; c < im.cols; c++)
		{
			om_(r,c) = im_(r,c) * scale;
		}
	}
	cout << (abtic() - tRecorder) << " using Mat_ " << endl;
#if ISSHOW
	imshow("Scaled Image: using Mat_", om);
	waitKey();
#endif

	// 5. using *
	tRecorder = abtic();
	om = im*scale;
	cout << (abtic() - tRecorder) << " using * " << endl;
#if ISSHOW
	imshow("Scaled Image: using *", om);
	waitKey();
#endif

	return 0;
}

代码段10. 测试代码

如果你想使用第一部分提到的Makefile,你需要将代码段10保存成test.cpp,或者保存成你希望的某个名字,但是同时应该修改Makfile中的所有“test.cpp”。

在正确执行之前,将代码段10中的第40行代码改成你的图片名称。

2、实验平台

CPU:Intel(R) Pentium(R) CPU G840 @ 2.80GHz

G++:4.8.2

OpenCV : 2.4.9

3、实验结果

编译选项使用-O3时,其中一次执行结果:

489570 using at<>()
467315 using ptr<>()
468603 using iterator
469041 using Mat_
621367 using * 

编译选项使用-O0 -g时,其中一次执行结果:

2.48216e+06 using at<>()
2.15397e+06 using ptr<>()
3.80784e+06 using iterator
2.38941e+06 using Mat_
621099 using * 

4、实验分析

从上面的结果可以看出,使用×时,在两种模式下,计算速度差不多,这实际是由于我们的程序调用的OpenCV的库函数,而这个库函数调用的是同一个。

如果你的产品要求执行速度,从-O3条件下的输出结果可以看出,ptr这种方式速度稍微快一点。但是他们的差别并不大,所以应该再考虑代码的复杂度。

代码复杂度用代码量(代码行数、列数)、使用变量的个数、使用变量个类型掌握难度(比如指针可能难一点)等因素来度量。

最小的就是使用×了(最后一个方法)。虽然他的复杂度较小,实际只有一行代码,但是对于实际的应用,你要想调用OpenCV已经实现的功能,首先要确定OpenCV里已经实现了这个功能。

其次,我认为复杂度较小的是方法一,因为它实际上可以不借用pix变量,完成前述算法,使用变量数较少,代码量也不多。

Mat_和ptr这两种方式的复杂度差不多,如果使用指针是一种稍微难一点的方式的话,那么Mat_的复杂度可以认为稍微小一点。

一般认为迭代器是C++里面比较高级的特性,也是学习C++最靠后的技术,再加上它使用了指针,如果指针算是比较难掌握的技术的话,使用迭代器这种方式复杂度可以说是最复杂的了。

有些情况下,需要考虑安全性,比如防止越界访问,如果你不想考虑过多边界的问题,使用迭代器也许是一种不错的选择!

五、总结

选择哪种元素访问方式,应该根据自己的实际应用环境,具体分析作出决定。主要考虑三个因素:性能、代码复杂度、安全性,根据自己的程序类型,选择。

OpenCV:Mat元素访问方法、性能、代码复杂度以及安全性分析的更多相关文章

  1. OpenCV:Mat元素访问方法、演出、代码的复杂性和安全性分析

    欢迎转载.尊重原创,因此,请注明出处: http://blog.csdn.net/bendanban/article/details/30527785 本文讲述了OpenCV中几种訪问矩阵元素的方法, ...

  2. jquery iframe父子框架中的元素访问方法

    在web开发中,经常会用到iframe,难免会碰到需要在父窗口中使用iframe中的元素.或者在iframe框架中使用父窗口的元素 js 在父窗口中获取iframe中的元素 1. 格式:window. ...

  3. OpenCV不同类型Mat的at方法访问元素时该如何确定模板函数的typename(转)

    自从OpenCV推出了Mat后越来越像是Matlab了,使用起来方便了很多,但是,在用at方法访问Mat时,如何选用合适的typename类型来访问相应的Mat元素是个头疼的问题. 比如: int H ...

  4. 快速遍历OpenCV Mat图像数据的多种方法和性能分析 | opencv mat for loop

    本文首发于个人博客https://kezunlin.me/post/61d55ab4/,欢迎阅读! opencv mat for loop Series Part 1: compile opencv ...

  5. 访问 HTML中元素的方法

    http://www.w3school.com.cn/jsref/index.asp   1.document.getElementbyId("id1"),Html中,名称是id1 ...

  6. OpenCv Mat操作总结

    Author:: Maddock Date: 2015-03-23 16:33:49 转载请注明出处:http://blog.csdn.net/adong76/article/details/4053 ...

  7. C++ Opencv Mat类型使用的几个注意事项及自写函数实现Laplace图像锐化

    为了提升自己对Opencv中Mat数据类型的熟悉和掌握程度,自己尝试着写了一下Laplace图像锐化函数,一路坎坷,踩坑不断.现将代码分享如下: #include <opencv2/opencv ...

  8. OPENCV mat类

    OpenCV参考手册之Mat类详解 目标 我们有多种方法可以获得从现实世界的数字图像:数码相机.扫描仪.计算机体层摄影或磁共振成像就是其中的几种.在每种情况下我们(人类)看到了什么是图像.但是,转换图 ...

  9. opencv Mat 像素操作

    1 cv::Mat cv::Mat是一个n维矩阵类,声明在<opencv2/core/core.hpp>中.   class CV_EXPORTS Mat { public: //a lo ...

随机推荐

  1. [LeetCode] Student Attendance Record I 学生出勤记录之一

    You are given a string representing an attendance record for a student. The record only contains the ...

  2. 【LSGDOJ 2015】数页码

    题目描述 一本书的页码是从 1-n 编号的连续整数:1, 2, 3, ... , n.请你求出全部页码中所有单个数字的和,例如第 123 页,它的和就是 1+2+3=6. 输入 一行为 n(1 < ...

  3. [Baltic2004]sequence

    题目描述: 给定一个序列t1,t2,...,tn ,求一个递增序列z1<z2<...<zn , 使得R=|t1−z1|+|t2−z2|+...+|tn−zn| 的值最小.本题中,我们 ...

  4. Codeforces Round#433 简要题解

    来自FallDream的博客,未经允许,请勿转载,谢谢. 我的号自从几个月前姿势水平过低疯狂掉分之后就没动过了  突然想上点分  就打了一场Div1  没想到打到了rank5  一发上橙了,可还行. ...

  5. hihocoder #1159 : 扑克牌

    描述 一副不含王的扑克牌由52张牌组成,由红桃.黑桃.梅花.方块4组牌组成,每组13张不同的面值.现在给定52张牌中的若干张,请计算将它们排成一列,相邻的牌面值不同的方案数. 牌的表示方法为XY,其中 ...

  6. [Spoj]Counting Divisors (cube)

    来自FallDream的博客,未经允许,请勿转载,谢谢. 设d(x)表示x的约数个数,求$\sum_{i=1}^{n}d(i^{3})$ There are 5 Input files. - Inpu ...

  7. SpringBoot学习之mvc

    Spring Boot非常适合Web应用程序开发. 我们可以使用嵌入式Tomcat,Jetty或Undertow轻松创建自包含的HTTP服务器. 大多数Web应用程序将使用spring-boot-st ...

  8. moment.js常用时间示例,时间管理

    '今天': moment() '昨天': moment().subtract(1, 'days') '过去7天':moment().subtract(7, 'days'),moment() '上月': ...

  9. JS中的DOM— —节点以及操作

    DOM操作在JS中可以说是非常常见了吧,很多网页的小功能的实现,比如一些元素的增删操作等都可以用JS来实现.那么在DOM中我们需要知道些什么才能完成一些功能的实现呢?今天这篇文章就先简单的带大家入一下 ...

  10. ctf writeup之程序员密码

    起因 在v2ex上看到有人发了一篇帖子,说做了一个程序员小游戏,遂试玩了一下. 游戏的地址在这里: http://www.bettertomissthantomeet.com/pages/level. ...