ROS机器人程序设计(原书第2版)补充资料 (陆) 第六章 点云 PCL
ROS机器人程序设计(原书第2版)补充资料 (陆) 第六章 点云 PCL
书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用。
RGBD深度摄像头传感器最常用的数据存储,处理和显示方式就是点云。
推荐查阅-PCL官网:http://www.pointclouds.org/
1. http://wiki.ros.org/pcl_ros 2. http://wiki.ros.org/pcl
补充阅读:
1 http://blog.csdn.net/zhangrelay/article/details/50053733
2 http://blog.csdn.net/zhangrelay/article/details/50240935
第163页:
简介点云。
第163-165页:
理解点云,包括类型,算法和接口等。
第166-190页:
学习在ROS使用PCL,包括创建点云,可视化,滤波,缩减采样,配准,匹配,分区,分割等。
第191页:
本章小结。
思考与巩固:
1 使用深度摄像头采集环境信息,并用点云显示,用本章提及的方法进行处理。
2 在ROSwiki上查阅点云相关功能包并完成编译使用。
附:
How to use a PCL tutorial in ROS
目录
Create a ROS package
$ catkin_create_pkg my_pcl_tutorial pcl_conversions pcl_ros roscpp sensor_msgs
Then, modify the package.xml to add
<build_depend>libpcl-all-dev</build_depend>
<run_depend>libpcl-all</run_depend>
Create the code skeleton
Create an empty file called src/example.cpp and paste the following code in it:
1 #include <ros/ros.h>
2 // PCL specific includes
3 #include <sensor_msgs/PointCloud2.h>
4 #include <pcl_conversions/pcl_conversions.h>
5 #include <pcl/point_cloud.h>
6 #include <pcl/point_types.h>
7
8 ros::Publisher pub;
9
10 void
11 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
12 {
13 // Create a container for the data.
14 sensor_msgs::PointCloud2 output;
15
16 // Do data processing here...
17 output = *input;
18
19 // Publish the data.
20 pub.publish (output);
21 }
22
23 int
24 main (int argc, char** argv)
25 {
26 // Initialize ROS
27 ros::init (argc, argv, "my_pcl_tutorial");
28 ros::NodeHandle nh;
29
30 // Create a ROS subscriber for the input point cloud
31 ros::Subscriber sub = nh.subscribe ("input", 1, cloud_cb);
32
33 // Create a ROS publisher for the output point cloud
34 pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);
35
36 // Spin
37 ros::spin ();
38 }
The code above does nothing but initialize ROS, create a subscriber and a publisher for PointCloud2 data.
Add the source file to CMakeLists.txt
Edit the CMakeLists.txt file in your newly created package and add:
add_executable(example src/example.cpp)
target_link_libraries(example ${catkin_LIBRARIES})
Download the source code from the PCL tutorial
PCL has about four different ways of representing point cloud data, so it can get a bit confusing, but we'll try to keep it simple for you. The types are:
sensor_msgs::PointCloud — ROS message (deprecated)
sensor_msgs::PointCloud2 — ROS message
pcl::PCLPointCloud2 — PCL data structure mostly for compatibility with ROS (I think)
pcl::PointCloud<T> — standard PCL data structure
In the following code examples we will focus on the ROS message (sensor_msgs::PointCloud2) and the standard PCL data structure (pcl::PointCloud<T>). However, you should also note that pcl::PCLPointCloud2 is an important and useful type as well: you can directly subscribe to nodes using that type and it will be automatically serialized to/from the sensor_msgs type. See this example to try PCLPointCloud2 yourself.
sensor_msgs/PointCloud2
If you'd like to save yourself some copying and pasting, you can download the source file for this example here. Just remember to rename the file to example.cpp or edit your CMakeLists.txt to match.
The sensor_msgs/PointCloud2 format was designed as a ROS message, and is the preferred choice for ROS applications. In the following example, we downsample a PointCloud2 structure using a 3D grid, thus reducing the number of points in the input dataset considerably.
To add this capability to the code skeleton above, perform the following steps:
visit http://www.pointclouds.org/documentation/, click on Tutorials, then navigate to the Downsampling a PointCloud using a VoxelGrid filter tutorial (http://www.pointclouds.org/documentation/tutorials/voxel_grid.php)
- read the code and the explanations provided there. You will notice that the code breaks down essentially in 3 parts:
- load the cloud (lines 9-19)
- process the cloud (lines 20-24)
- save the output (lines 25-32)
- since we use ROS subscribers and publishers in our code snippet above, we can ignore the loading and saving of point cloud data using the PCD format. Thus, the only relevant part in the tutorial remains lines 20-24 that create the PCL object, pass the input data, and perform the actual computation:
In these lines, the input dataset is named cloud, and the output dataset is called cloud_filtered. We can copy this work, but remember from earlier that we said we wanted to work with the sensor_msgs class, not the pcl class. In order to do this, we're going to have to do a little bit of extra work to convert the ROS message to the PCL type. Modify the callback function as follows:
1 #include <pcl/filters/voxel_grid.h>
2
3 ...
4
5 void
6 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& cloud_msg)
7 {
8 // Container for original & filtered data
9 pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2;
10 pcl::PCLPointCloud2ConstPtr cloudPtr(cloud);
11 pcl::PCLPointCloud2 cloud_filtered;
12
13 // Convert to PCL data type
14 pcl_conversions::toPCL(*cloud_msg, *cloud);
15
16 // Perform the actual filtering
17 pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
18 sor.setInputCloud (cloudPtr);
19 sor.setLeafSize (0.1, 0.1, 0.1);
20 sor.filter (cloud_filtered);
21
22 // Convert to ROS data type
23 sensor_msgs::PointCloud2 output;
24 pcl_conversions::fromPCL(cloud_filtered, output);
25
26 // Publish the data
27 pub.publish (output);
28 }
Note
Since different tutorials will often use different variable names for their inputs and outputs, remember that you may need to modify the code slightly when integrating the tutorial code into your own ROS node. In this case, notice that we had to change the variable name input to cloud, and output to cloud_filtered in order to match up with the code from the tutorial we copied.
Note that there is a slight inefficiency here. The fromPCL can be replaced with moveFromPCL to prevent copying the entire (filtered) point cloud. However, the toPCL call cannot be optimized in this way since the original input is const.
Save the output file then build:
$ cd %TOP_DIR_YOUR_CATKIN_HOME%
$ catkin_make
Then run:
$ rosrun my_pcl_tutorial example input:=/narrow_stereo_textured/points2
or, if you're running an OpenNI-compatible depth sensor, try:
$ roslaunch openni_launch openni.launch
$ rosrun my_pcl_tutorial example input:=/camera/depth/points
You can visualize the result by running RViz:
$ rosrun rviz rviz
and adding a "PointCloud2" display. Select camera_depth_frame for the Fixed Frame (or whatever frame is appropriate for your sensor) and select output for the PointCloud2 topic. You should see a highly downsampled point cloud. For comparison, you can view the /camera/depth/points topic and see how much it has been downsampled.
pcl/PointCloud<T>
As with the previous example, if you want to skip a few steps, you can download the source file for this example here.
The pcl/PointCloud<T> format represents the internal PCL point cloud format. For modularity and efficiency reasons, the format is templated on the point type, and PCL provides a list of templated common types which are SSE aligned. In the following example, we estimate the planar coefficients of the largest plane found in a scene.
To add this capability to the code skeleton above, perform the following steps:
visit http://www.pointclouds.org/documentation/, click on Tutorials, then navigate to the Planar model segmentation tutorial (http://www.pointclouds.org/documentation/tutorials/planar_segmentation.php)
- read the code and the explanations provided there. You will notice that the code breaks down essentially in 3 parts:
- create a cloud and populate it with values (lines 12-30)
- process the cloud (38-56)
- write the coefficients (58-68)
- since we use ROS subscribers in our code snippet above, we can ignore the first step, and just process the cloud received on the callback directly. Thus, the only relevant part in the tutorial remains lines 38-56 that create the PCL object, pass the input data, and perform the actual computation:
1 pcl::ModelCoefficients coefficients;
2 pcl::PointIndices inliers;
3 // Create the segmentation object
4 pcl::SACSegmentation<pcl::PointXYZ> seg;
5 // Optional
6 seg.setOptimizeCoefficients (true);
7 // Mandatory
8 seg.setModelType (pcl::SACMODEL_PLANE);
9 seg.setMethodType (pcl::SAC_RANSAC);
10 seg.setDistanceThreshold (0.01);
11
12 seg.setInputCloud (cloud.makeShared ());
13 seg.segment (inliers, coefficients);
In these lines, the input dataset is named cloud and is of type pcl::PointCloud<pcl::PointXYZ>, and the output is represented by a set of point indices that contain the plane together with the plane coefficients. cloud.makeShared()creates a boost shared_ptr object for the object cloud (see the pcl::PointCloud API documentation).
Copy these lines, in the code snippet above, by modifying the callback function as follows:
1 #include <pcl/sample_consensus/model_types.h>
2 #include <pcl/sample_consensus/method_types.h>
3 #include <pcl/segmentation/sac_segmentation.h>
4
5 ...
6
7 void
8 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
9 {
10 // Convert the sensor_msgs/PointCloud2 data to pcl/PointCloud
11 pcl::PointCloud<pcl::PointXYZ> cloud;
12 pcl::fromROSMsg (*input, cloud);
13
14 pcl::ModelCoefficients coefficients;
15 pcl::PointIndices inliers;
16 // Create the segmentation object
17 pcl::SACSegmentation<pcl::PointXYZ> seg;
18 // Optional
19 seg.setOptimizeCoefficients (true);
20 // Mandatory
21 seg.setModelType (pcl::SACMODEL_PLANE);
22 seg.setMethodType (pcl::SAC_RANSAC);
23 seg.setDistanceThreshold (0.01);
24
25 seg.setInputCloud (cloud.makeShared ());
26 seg.segment (inliers, coefficients);
27
28 // Publish the model coefficients
29 pcl_msgs::ModelCoefficients ros_coefficients;
30 pcl_conversions::fromPCL(coefficients, ros_coefficients);
31 pub.publish (ros_coefficients);
32 }
Notice that we added two conversion steps: from sensor_msgs/PointCloud2 to pcl/PointCloud<T>and from pcl::ModelCoefficients to pcl_msgs::ModelCoefficients. We also changed the variable that we publish from output to coefficients.
In addition, since we're now publishing the planar model coefficients found rather than point cloud data, we have to change our publisher type from:
// Create a ROS publisher for the output point cloud
pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);
to:
// Create a ROS publisher for the output model coefficients
pub = nh.advertise<pcl_msgs::ModelCoefficients> ("output", 1);
Save the output file, then compile and run the code above:
$ rosrun my_pcl_tutorial example input:=/narrow_stereo_textured/points2
or, if you're running an OpenNI-compatible depth sensor, try:
$ rosrun my_pcl_tutorial example input:=/camera/depth/points
See the output with
$ rostopic echo output
ROS机器人程序设计(原书第2版)补充资料 (陆) 第六章 点云 PCL的更多相关文章
- ROS机器人程序设计(原书第2版)补充资料 教学大纲
ROS机器人程序设计(原书第2版) 补充资料 教学大纲 针对该书稍后会补充教学大纲.教案.多媒体课件以及练习题等. <ROS机器人程序设计>课程简介 课程编号:XXXXXX 课程名称:RO ...
- ROS机器人程序设计(原书第2版)补充资料 (拾) 第十章 使用MoveIt!
ROS机器人程序设计(原书第2版)补充资料 (拾) 第十章 使用MoveIt! 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. MoveIt ...
- ROS机器人程序设计(原书第2版)补充资料 (玖) 第九章 导航功能包集进阶 navigation
ROS机器人程序设计(原书第2版)补充资料 (玖) 第九章 导航功能包集进阶 navigation 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中 ...
- ROS机器人程序设计(原书第2版)补充资料 (零) 源代码、资料和印刷错误修订等 2017年01月01日更新
ROS机器人程序设计(原书第2版)补充资料 (零) 源代码等 ROS官网 版)部分内容修订 页:第1行,删去$ 页:第6行,float64 y 前面加一个空格 页:中间创建主题:下面程序不用换行,(& ...
- ROS机器人程序设计(原书第2版)学习镜像分享及使用说明
ROS机器人程序设计(原书第2版)学习镜像分享及使用说明 系统用于ROS爱好者学习交流,也可用于其他用途,并不局限于ROS. 这款镜像文件是基于一年前的Ubuntu ROS Arduino Gazeb ...
- ROS机器人程序设计(原书第2版)补充资料 (捌) 第八章 导航功能包集入门 navigation
ROS机器人程序设计(原书第2版)补充资料 (捌) 第八章 导航功能包集入门 navigation 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中 ...
- ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse
ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse 书中,大部分出现hydro的地方,直接替换为indigo或ja ...
- ROS机器人程序设计(原书第2版)补充资料 (伍) 第五章 计算机视觉
ROS机器人程序设计(原书第2版)补充资料 (伍) 第五章 计算机视觉 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 计算机视觉这章分为两 ...
- ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS下使用传感器和执行器
ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS使用传感器和执行器 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 第四 ...
随机推荐
- C# 获取字符串中的英文字母
string str20 = "ABC123"; string strSplit1,strSplit2; //取出字符串中所有的英文字母 strSplit1 = Regex.Rep ...
- hdu 4352 数位dp + 状态压缩
XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- bzoj 4010: [HNOI2015]菜肴制作
Description 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予 1到N的顺序编号,预估质量最高的菜肴编号 ...
- SpringBoot学习之集成dubbo
一.摘自官网的一段描述 1.背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 ...
- Linux下实现普通用户免密码登录【超详细】
现有需求,需要把所有服务器的root和密码登录都禁用,只开放普通用户登录,这时需要给普通用户配置秘钥文件,实现无密码登录 如果普通用户需要root权限,在root用户下执行命令:visudo [roo ...
- tensorflow deepmath:基于深度学习的自动化数学定理证明
Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google ...
- String,StringBuilder,StringBuffer三者的区别
参考 String,StringBuilder,StringBuffer三者的区别 这三个类之间的区别主要是在两个方面,即运行速度和线程安全这两方面. 1.运行速度 首先说运行速度,或者说是执行速 ...
- js error
0x800a0259 - JavaScript 运行时错误: 未知的运行时错误 <p id="navigatorInfo"></p> var txt = & ...
- Java 的异常处理机制
异常是日常开发中大家都「敬而远之」的一个东西,但实际上几乎每种高级程序设计语言都有自己的异常处理机制,因为无论你是多么厉害的程序员,都不可避免的出错,换句话说:你再牛逼,你也有写出 Bug 的时候. ...
- Jupyter notebook 输出含中文的pdf 方法
我电脑 OS 是 Ubuntu14.04, 可用的最简单方法是: 打开终端,输入 sudo find / -name article.tplx 用以查找 article.tplx 文件位置,我电脑的结 ...