Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)
今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕)
你们都说图看着没意思不好看,那今天就来点情景




for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}


1 //经过1号顶点
2 for(i=1;i<=n;i++)
3 for(j=1;j<=n;j++)
4 if (e[i][j] > e[i][1]+e[1][j]) e[i][j]=e[i][1]+e[1][j];
5 //经过2号顶点
6 for(i=1;i<=n;i++)
7 for(j=1;j<=n;j++)
8 if (e[i][j] > e[i][2]+e[2][j]) e[i][j]=e[i][2]+e[2][j];




for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}
另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。
现在我们来看看一道例题
P1744 采购特价商品
这个题就是先把所有的坐标读进去,之后对于每一个可联通的商店我们算一次他们的距离存到图里,等到所有的数据都处理完一张图就诞生了,然后跑一遍Floyd,万事大吉
AC代码(一次过真的好久好久没出现了~嘤)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
struct emmmmmmm
{
int x, y;
} pos[];
int main()
{
int n, m, a, b, s, t;
double access[][];
memset(access, , sizeof(access));
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d%d", &pos[i].x, &pos[i].y);
scanf("%d", &m);
for (int i = ; i <= m; ++i)
{
scanf("%d%d", &a, &b);
access[a][b] = access[b][a] = (double)(sqrt(pow(pos[a].x - pos[b].x, ) + pow(pos[a].y - pos[b].y, )));
}
for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}
scanf("%d%d", &s, &t);
printf("%.2lf", access[s][t]);
return ;
}
最后补一句
Floyd的时间复杂度是o (n^3),空间复杂度是o(n^2)(用的是邻接表)。
以及如果题目中数据范围<=5000,一般就是Floyd没跑了
n方过百万哦~(不过你别打算n^3过十万)
Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)的更多相关文章
- Floyd算法-傻子也能看懂的弗洛伊德算法(转)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. ...
- Floyd-傻子也能看懂的弗洛伊德算法(转)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. ...
- 一个蒟蒻对FFT的理解(蒟蒻也能看懂的FFT)
建议同学们先自学一下"复数(虚数)"的性质.运算等知识,不然看这篇文章有很大概率看不懂. 前言 作为一个典型的蒟蒻,别人的博客都看不懂,只好自己写一篇了. 膜拜机房大佬 HY 一. ...
- 萌新也能看懂的KMP算法
前言 算法是什么?算法就是数学规律.怎么去总结和发现这个规律,就是理解算法的过程. KMP算法的本质是穷举法,而并不是去创造新的匹配逻辑. 以下将搜寻的字符串称为子串(part),以P表示.被搜寻的字 ...
- [转]看懂UML类图
这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图所表达的含义和最终的代码 ...
- 看懂Oracle执行计划
最近一直在跟Oracle打交道,从最初的一脸懵逼到现在的略有所知,也来总结一下自己最近所学,不定时更新ing- 一:什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问 ...
- 一张图看懂ANSYS17.0 流体 新功能与改进
一张图看懂ANSYS17.0 流体 新功能与改进 提交 我的留言 加载中 已留言 一张图看懂ANSYS17.0 流体 新功能与改进 原创2016-02-03ANSYS模拟在线模拟在线 模拟在线 ...
- 怎样看懂Oracle的执行计划
怎样看懂Oracle的执行计划 一.什么是执行计划 An explain plan is a representation of the access path that is taken when ...
- 看懂SqlServer查询计划【转】
原文链接:http://www.cnblogs.com/fish-li/archive/2011/06/06/2073626.html 开始 SQL Server 查找记录的方法 SQL Server ...
随机推荐
- [转帖]无网络离线安装 vs2017
无网络离线安装 vs2017 公司电脑禁止,只有一个老的vs2017的安装目录(之前通过 --layout 安装时生成的离线文件).找了一圈百度,没能解决问题,最后,问bing,查微软的官方网站命令, ...
- 变量类型、构造器、封装以及 LeetCode 每日一题
1.成员变量和局部变量 1.1成员变量和局部变量定义 成员变量指的是类里面定义的变量(field),局部变量指的是在方法里定义的变量. 成员变量无须显示初始化,系统会自动在准备阶段或创建该类的实例时进 ...
- 【学习笔记】分布式Tensorflow
目录 分布式原理 单机多卡 多机多卡(分布式) 分布式的架构 节点之间的关系 分布式的模式 数据并行 同步更新和异步更新 分布式API 分布式案例 Tensorflow的一个特色就是分布式计算.分布式 ...
- jsp内置对象-session对象
一.session概述 隐含对象session是javax.servlet.http.HttpSession接口实现类的对象,用于保存用户的状态信息. 在web开发中,服务器为每个用户浏览器创建一个会 ...
- Django用户继承AbstractUser后密码为明文
Django用户继承AbstractUser后密码为明文 其实本不应该有这个问题,却花了我很久的时间,因为还是初学阶段. 造成这个原因是因为在admin注册的生活没有指定Admin 在app的admi ...
- arcgis api 3.x for js 之 echarts 开源 js 库实现地图统计图分析(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- Android-蓝牙的网络共享与连接分析
一.概述 本次分析是基于android7.0的源码,主要是介绍如何通过反射来打开蓝牙的网络共享以及互联网的连接. 二.蓝牙的网络共享 1. 网络共享部分源码分析 关于packages/apps/Set ...
- IntentService原理分析
IntentService是一个异步处理请求的服务,通过Context#startService(Intent)可以将请求发送给IntentService,IntentService在工作线程中依次串 ...
- Android Fragment碎片
什么是碎片? 碎片(Fragment)是一种可以嵌入在活动当中的UI片段,它能让程序更加合理和充分地利用大屏幕的空间,因而在平板上应用的非常广泛.可以把Fragment当成Activity一个界面的一 ...
- QT中使用google breakpad捕获程序崩溃异常
今天给大家介绍一个在linux下如何捕获程序崩溃异常的方法 一.google breakpad源码的下载和编译 1.https://github.com/google/breakpad.git,源码地 ...
