Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)
今天来讲点图论的知识,来看看最短路径的一个求法(所有的求法我以后会写,也有可能咕咕咕)
你们都说图看着没意思不好看,那今天就来点情景




for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}


1 //经过1号顶点
2 for(i=1;i<=n;i++)
3 for(j=1;j<=n;j++)
4 if (e[i][j] > e[i][1]+e[1][j]) e[i][j]=e[i][1]+e[1][j];
5 //经过2号顶点
6 for(i=1;i<=n;i++)
7 for(j=1;j<=n;j++)
8 if (e[i][j] > e[i][2]+e[2][j]) e[i][j]=e[i][2]+e[2][j];




for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}
另外需要注意的是:Floyd-Warshall算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。
现在我们来看看一道例题
P1744 采购特价商品
这个题就是先把所有的坐标读进去,之后对于每一个可联通的商店我们算一次他们的距离存到图里,等到所有的数据都处理完一张图就诞生了,然后跑一遍Floyd,万事大吉
AC代码(一次过真的好久好久没出现了~嘤)
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
struct emmmmmmm
{
int x, y;
} pos[];
int main()
{
int n, m, a, b, s, t;
double access[][];
memset(access, , sizeof(access));
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d%d", &pos[i].x, &pos[i].y);
scanf("%d", &m);
for (int i = ; i <= m; ++i)
{
scanf("%d%d", &a, &b);
access[a][b] = access[b][a] = (double)(sqrt(pow(pos[a].x - pos[b].x, ) + pow(pos[a].y - pos[b].y, )));
}
for (int k = ; k <= n; ++k)
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
{
access[i][j] = min(access[i][j], access[i][k] + access[k][j]);
}
scanf("%d%d", &s, &t);
printf("%.2lf", access[s][t]);
return ;
}
最后补一句
Floyd的时间复杂度是o (n^3),空间复杂度是o(n^2)(用的是邻接表)。
以及如果题目中数据范围<=5000,一般就是Floyd没跑了
n方过百万哦~(不过你别打算n^3过十万)
Floyd-蒟蒻也能看懂的弗洛伊德算法(当然我是蒟蒻)的更多相关文章
- Floyd算法-傻子也能看懂的弗洛伊德算法(转)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. ...
- Floyd-傻子也能看懂的弗洛伊德算法(转)
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. ...
- 一个蒟蒻对FFT的理解(蒟蒻也能看懂的FFT)
建议同学们先自学一下"复数(虚数)"的性质.运算等知识,不然看这篇文章有很大概率看不懂. 前言 作为一个典型的蒟蒻,别人的博客都看不懂,只好自己写一篇了. 膜拜机房大佬 HY 一. ...
- 萌新也能看懂的KMP算法
前言 算法是什么?算法就是数学规律.怎么去总结和发现这个规律,就是理解算法的过程. KMP算法的本质是穷举法,而并不是去创造新的匹配逻辑. 以下将搜寻的字符串称为子串(part),以P表示.被搜寻的字 ...
- [转]看懂UML类图
这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图所表达的含义和最终的代码 ...
- 看懂Oracle执行计划
最近一直在跟Oracle打交道,从最初的一脸懵逼到现在的略有所知,也来总结一下自己最近所学,不定时更新ing- 一:什么是Oracle执行计划? 执行计划是一条查询语句在Oracle中的执行过程或访问 ...
- 一张图看懂ANSYS17.0 流体 新功能与改进
一张图看懂ANSYS17.0 流体 新功能与改进 提交 我的留言 加载中 已留言 一张图看懂ANSYS17.0 流体 新功能与改进 原创2016-02-03ANSYS模拟在线模拟在线 模拟在线 ...
- 怎样看懂Oracle的执行计划
怎样看懂Oracle的执行计划 一.什么是执行计划 An explain plan is a representation of the access path that is taken when ...
- 看懂SqlServer查询计划【转】
原文链接:http://www.cnblogs.com/fish-li/archive/2011/06/06/2073626.html 开始 SQL Server 查找记录的方法 SQL Server ...
随机推荐
- C#/VB.NET设置Excel表格背景色
在查看很多有复杂的数据的表格时,为了能够快速地找到所需要的数据组时,往往需要对该数据组进行分类,一个简单快速的方法就是对数据组所在的单元格填充背景颜色,这样就使得我们在阅读文件时能够直观的看到数据分类 ...
- 利用IDisposable接口构建包含非托管资源对象
托管资源与非托管资源 在.net中,对象使用的资源分为两种:托管资源与非托管资源.托管资源由CLR进行管理,不需要开发人员去人工进行控制,.NET中托管资源主要指"对象在堆中的内存" ...
- android 权限库EasyPermissions
文章链接:https://mp.weixin.qq.com/s/H63Sn03xV0JoINXB4SWWKA 众所周知,在android 6.0之后,如果应用程序需要危险权限,则用户必须明确向应用授予 ...
- Numpy库的学习(三)
今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...
- JMeter写入文件
之前我们推文讨论过如何使用jmeter读取文件, 比如csv, txt文件读取, 只要配置csv数据文件, 即可非常容易的从文件中读取想要的数据, 但是如果数据已经从API或者DB中获取, 想存放到 ...
- redis -字符串string
字符串类型是Redis 中最为基础的数据存储类型,它在Redis 中是二进制安全的,该类型可以接收任何格式的数据, 字符串 Value 最多可以容纳的数据长度是521M. 保存: 设置键值. set ...
- c# 创建excel表头及内容
主要通过ajax调用函数Getinfo 1.定义表dh DataTable dh = new DataTable(); 2.创建表头 public void CreateCol(string Colu ...
- jquery监听textarea内容变化
$('#textarea').bind('input propertychange', function(){ var length = $("#textarea").val(). ...
- Java基础系列--08_集合1
---恢复内容开始--- 集合当中有很多都是应用到泛型的技术,所以在讲集合之前,应该先将泛型的概念普及一下. 泛型: (1)泛型是一种类型,但是这种类型是在编译或者调用方法时才确定. (2 ...
- Binwalk的安装和使用
Binwalk的安装和使用 一.安装Git 参考链接:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067 ...
