学习Tensorflow,反卷积
在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等。目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的feature map上采样(反卷积)到输入图像的尺寸空间,就是反卷积层。那么它在tensorflow里是怎么实现的呢?本篇博文讲介绍这方面的内容。
1. 反卷积函数介绍
tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None)
这是tensorflow里实现反卷积的函数,value是上一层的feature map,filter是卷积核[kernel_size, kernel_size, output_channel, input_channel ],output_shape定义输出的尺寸[batch_size, height, width, channel],padding是边界打补丁的算法。
这里需要特别说明的是,output_shape和strides里的参数是相互耦合的,我们可以根据输入和输出确定strides参数(正整数),也可以根据输入和strides确定输出尺寸。
2. Alex net加反卷积层
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Timing benchmark for AlexNet inference.
To run, use:
bazel run -c opt --config=cuda \
third_party/tensorflow/models/image/alexnet:alexnet_benchmark
Across 100 steps on batch size = 128.
Forward pass:
Run on Tesla K40c: 145 +/- 1.5 ms / batch
Run on Titan X: 70 +/- 0.1 ms / batch
Forward-backward pass:
Run on Tesla K40c: 480 +/- 48 ms / batch
Run on Titan X: 244 +/- 30 ms / batch
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import math
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('batch_size', 1,
"""Batch size.""")
tf.app.flags.DEFINE_integer('num_batches', 100,
"""Number of batches to run.""")
tf.app.flags.DEFINE_integer('image_width', 345,
"""image width.""")
tf.app.flags.DEFINE_integer('image_height', 460,
"""image height.""")
def print_activations(t):
print(t.op.name, ' ', t.get_shape().as_list())
def inference(images):
"""Build the AlexNet model.
Args:
images: Images Tensor
Returns:
pool5: the last Tensor in the convolutional component of AlexNet.
parameters: a list of Tensors corresponding to the weights and biases of the
AlexNet model.
"""
parameters = []
# conv1
with tf.name_scope('conv1') as scope:
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
print_activations(conv1)
parameters += [kernel, biases]
# lrn1
# TODO(shlens, jiayq): Add a GPU version of local response normalization.
# pool1
pool1 = tf.nn.max_pool(conv1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
print_activations(pool1)
# conv2
with tf.name_scope('conv2') as scope:
kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv2)
# pool2
pool2 = tf.nn.max_pool(conv2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
print_activations(pool2)
# conv3
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv3)
# conv4
with tf.name_scope('conv4') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv4 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv4)
# conv5
with tf.name_scope('conv5') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv5 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv5)
# pool5
pool5 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
print_activations(pool5)
# conv6
with tf.name_scope('conv6') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 1],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool5, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv6 = tf.nn.relu(bias, name=scope)
parameters += [kernel, biases]
print_activations(conv6)
# deconv1
with tf.name_scope('deconv1') as scope:
wt = tf.Variable(tf.truncated_normal([11, 11, 1, 1]))
deconv1 = tf.nn.conv2d_transpose(conv6, wt, [FLAGS.batch_size, 130, 100, 1], [1, 10, 10, 1], 'SAME')
print_activations(deconv1)
# deconv2
with tf.name_scope('deconv2') as scope:
wt = tf.Variable(tf.truncated_normal([11, 11, 1, 1]))
deconv2 = tf.nn.conv2d_transpose(deconv1, wt, [FLAGS.batch_size, 260, 200, 1], [1, 2, 2, 1], 'SAME')
print_activations(deconv2)
return deconv2, parameters
def time_tensorflow_run(session, target, info_string):
"""Run the computation to obtain the target tensor and print timing stats.
Args:
session: the TensorFlow session to run the computation under.
target: the target Tensor that is passed to the session's run() function.
info_string: a string summarizing this run, to be printed with the stats.
Returns:
None
"""
num_steps_burn_in = 10
total_duration = 0.0
total_duration_squared = 0.0
for i in xrange(FLAGS.num_batches + num_steps_burn_in):
start_time = time.time()
_ = session.run(target)
duration = time.time() - start_time
if i > num_steps_burn_in:
if not i % 10:
print ('%s: step %d, duration = %.3f' %
(datetime.now(), i - num_steps_burn_in, duration))
total_duration += duration
total_duration_squared += duration * duration
mn = total_duration / FLAGS.num_batches
vr = total_duration_squared / FLAGS.num_batches - mn * mn
sd = math.sqrt(vr)
print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
(datetime.now(), info_string, FLAGS.num_batches, mn, sd))
def run_benchmark():
"""Run the benchmark on AlexNet."""
with tf.Graph().as_default():
# Generate some dummy images.
# Note that our padding definition is slightly different the cuda-convnet.
# In order to force the model to start with the same activations sizes,
# we add 3 to the image_size and employ VALID padding above.
images = tf.Variable(tf.random_normal([FLAGS.batch_size,
460,
345, 3],
dtype=tf.float32,
stddev=1e-1))
# Build a Graph that computes the logits predictions from the
# inference model.
pool5, parameters = inference(images)
# Build an initialization operation.
init = tf.initialize_all_variables()
# Start running operations on the Graph.
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
sess = tf.Session(config=config)
sess.run(init)
# Run the forward benchmark.
time_tensorflow_run(sess, pool5, "Forward")
# Add a simple objective so we can calculate the backward pass.
objective = tf.nn.l2_loss(pool5)
# Compute the gradient with respect to all the parameters.
grad = tf.gradients(objective, parameters)
# Run the backward benchmark.
time_tensorflow_run(sess, grad, "Forward-backward")
def main(_):
run_benchmark()
if __name__ == '__main__':
tf.app.run()
三. 运行结果
reference url:
https://www.tensorflow.org/versions/r0.9/api_docs/python/nn.html#convolution
http://cvlab.postech.ac.kr/research/deconvnet/
学习Tensorflow,反卷积的更多相关文章
- 学习笔记TF052:卷积网络,神经网络发展,AlexNet的TensorFlow实现
卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- tensorflow 卷积/反卷积-池化/反池化操作详解
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- 学习TensorFlow,浅析MNIST的python代码
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用pyth ...
随机推荐
- [SCOI2008]配对
题目描述 你有 n 个整数Ai和n 个整数Bi.你需要把它们配对,即每个Ai恰好对应一个Bp[i].要求所有配对的整数差的绝对值之和尽量小,但不允许两个相同的数配对.例如A={5,6,8},B={5, ...
- POJ1743 Musical Theme(二分+后缀数组)
题目大概是给n个数组成的串,求是否有多个“相似”且不重叠的子串的长度大于等于5,两个子串相似当且仅当长度相等且每一位的数字差都相等. 这题是传说中楼教主男人八题之一,虽然已经是用后缀数组解决不可重叠最 ...
- 洛谷4月月赛R1 Happy Poppin' Party Train
来自FallDream的博客,未经允许,请勿转载,谢谢. 听学长说的就来玩一玩,随便乱打打 没想到一堆人被取消了成绩,莫名混了个Rank3 还有第一题数据肯定是有问题 --------------- ...
- Centos7发送邮件
Centos7发送邮件 $ yum -y install mailx sendmail $ vim /etc/mail.rc set from=xxxxxx@.com set smtp=smtp..c ...
- React Suite v3.0 正式版发布
React Suite v3.0 正式版发布 相信很多人会好奇,React Suite 是什么? React Suite 是 HYPERS 前端团队和 UX 团队开源的一套基于 React 的 UI ...
- 实现一个ordeeddict
class MyOrderdict(): def __init__(self, mydict): self._cur = 0 self._mykeys = [] self._myvalues = [] ...
- debug的一些按钮意义
F9 resume programe 恢复程序 Alt+F10 show execution point 显示执行断点 F8 Step Over 相当于eclipse的f6 跳到下一步 F7 Step ...
- css修改浏览器默认的滚动条样式
//滚动条样式 ::-webkit-scrollbar { width: 10px; } /* 垂直滚动条的滑动块 */ ::-webkit-scrollbar-thumb:vertical { bo ...
- IE10以下兼容H5中的placeholder 以及改变它默认颜色
placeholder是H5<input>的属性之一,可惜在IE10以下不支持,万恶的IE!不过正因为有IE,才多了很多捣鼓,添了乐趣.不支持就不支持呗,自己动手丰衣足食,我们可以用js模 ...
- JMeter如何和Charles进行接口测试
什么是接口测试,接口测试到底如何开展,我相信任何一个软件测试人员都会有这样的疑问, 这里我以接口测试自动化平台的登录接口进行讲解. 一.什么是接口测试? 接口测试是测试系统组件间接口的一种测试.接口测 ...