深入解读Resnet
残差网络的设计目的
随着网络深度增加,会出现一种退化问题,也就是当网络变得越来越深的时候,训练的准确率会趋于平缓,但是训练误差会变大,这明显不是过拟合造成的,因为过拟合是指网络的训练误差会不断变小,但是测试误差会变大。为了解决这种退化现象,ResNet被提出。我们不再用多个堆叠的层直接拟合期望的特征映射,而是显式的用它们拟合一个残差映射。假设期望的特征映射为H(x),那么堆叠的非线性层拟合的是另一个映射,也就是F(x)=H(x)-x。假设最优化残差映射比最优化期望的映射更容易,也就是F(x)=H(x)-x比F(x)=H(x)更容易优化,则极端情况下,期望的映射要拟合的是恒等映射,此时残差网络的任务是拟合F(x)=0,普通网络要拟合的是F(x)=x,明显前者更容易优化。
残差块

定义一个残差块的形式为y=F(x,Wi)+x,其中x和y分别为残差块的输入和输出向量,F(x,Wi)是要学习的残差映射,在上图中有2层,F=W2σ(W1X),σ是Relu激活函数,在这个表达式中为了方便起见,省略了偏置,这里的shortcut connections是恒等映射,之所以用恒等映射是因为这样没有引进额外的参数和计算复杂度。残差函数F的形式是灵活的,残差块也可以有3层,但是如果残差块只有一层,则y=W1x+x,它只是一个线性层,3层的残差块如下如所示。

一般的我们称上图这种3层残差块为'bottleneck block',这里1x1的卷积起到了降维的作用,并且引入了更多的非线性变换,明显的增加了残差块的深度,能提高残差网络的表示能力。
残差网络的优点
残差网络与普通网络不同的地方就是引入了跳跃连接,这可以使上一个残差块的信息没有阻碍的流入到下一个残差块,提高了信息流通,并且也避免了由与网络过深所引起的消失梯度问题和退化问题。

假设有一个大型的神经网络Big NN,它的输入为X,输出激活值为al,则如果我们想要增加这个网络的深度,再给这个网络额外的加两层,最后的输出为al+2,可以把这两层看做一个残差块,并且带有捷径连接,整个网络中使用的激活函数为Relu.
al+2=g(zl+2+al),其中zl+2=Wl+2al+1+bl+1,若Wl+2=0,bl+1=0,则al+2=g(al),当al>=0时,al+2=al。这相当于是建立起了al和al+2的线性关系,相当于是忽略了al之后的两层神经层,实现了隔层线性传递,模型本身也就能够容忍更深层的网络,并且这个额外的残差块也不会影响它的性能.
残差网络的结构

上图一共是5中残差网络的结构,深度分别是18,34,50,101,152.首先都通过一个7x7的卷积层,接着是一个最大池化,之后就是堆叠残差块,其中50,101,152层的残差网络使用的残差块是瓶颈结构,各网络中残差块的个数从左到右依次是8,16,16,33,50。最后在网络的结尾通常连接一个全局平均池化.全局平均池化的好处是没有参数需要最优化防止过拟合,对输入输出的空间变换更具有鲁棒性,加强了特征映射与类别的一致性。
残差网络的本质
残差网络事实上是由多个浅的网络融合而成,它没有在根本上解决消失的梯度问题,只是避免了消失的梯度问题,因为它是由多个浅的网络融合而成,浅的网络在训练时不会出现消失的梯度问题,所以它能够加速网络的收敛.
深入解读Resnet的更多相关文章
- [源码解读] ResNet源码解读(pytorch)
自己看读完pytorch封装的源码后,自己又重新写了一边(模仿其书写格式), 一些问题在代码中说明. import torch import torchvision import argparse i ...
- CNN卷积神经网络详解
前言 在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享.目前的计划如下(以下网络全部使用Pytorch搭建): 专题一:计算机视觉基础 介 ...
- 解读 pytorch对resnet的官方实现
地址:https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py 贴代码 import torch.nn as ...
- 深度学习基础网络 ResNet
Highway Networks 论文地址:arXiv:1505.00387 [cs.LG] (ICML 2015),全文:Training Very Deep Networks( arXiv:150 ...
- Resnet BN
[深度学习]深入理解Batch Normalization批标准化 https://www.zhihu.com/topic/20084849/hot resnet(残差网络)的F(x)究竟长什么样子? ...
- YOLO2解读,训练自己的数据及相关转载以供学习
https://pjreddie.com/darknet/yolo/ 具体安装及使用可以参考官方文档https://github.com/pjreddie/darknet https://blog.c ...
- zz扔掉anchor!真正的CenterNet——Objects as Points论文解读
首发于深度学习那些事 已关注写文章 扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 关注他 JustDoIT 等 ...
- 《Stereo R-CNN based 3D Object Detection for Autonomous Driving》论文解读
论文链接:https://arxiv.org/pdf/1902.09738v2.pdf 这两个月忙着做实验 博客都有些荒废了,写篇用于3D检测的论文解读吧,有理解错误的地方,烦请有心人指正). 博客原 ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
随机推荐
- table中 点击某一行变色
效果图: <html> <head> <meta http-equiv="Content-Type" content="text/html; ...
- mysql进阶(十三)命令行导出导入数据库
MySQL命令行导出导入数据库 MySQL命令行导出数据库: 1,进入MySQL目录下的bin文件夹:cd MySQL中到bin文件夹的目录 如我输入的命令行:cd D:\Program Files\ ...
- Android Studio使用Lint进行代码检查
Android Studio目前已经更新到1.4版本,它作为Google官方推荐的IDE,功能非常强大,其中提供了一套静态代码分析工具,它可以帮助我们检查项目中存在的问题,让我们更有规范性的开发App ...
- SpriteBuilder中的CCB Node尺寸
当你创建一个类型为Layer的CCB文件时,你将注意到它的默认尺寸大小为568x384. 568个点是4英寸iphone的宽度,同时iPad屏幕只有512个点宽,更准确的说--SpriteBuilde ...
- Android 4.1.2系统添加重启功能
对于Android的的手机或者平板长期使用,感觉会出现慢的情况,所以偶尔还是需要重启一下,而长按电源键弹出的菜单又没有重启选项,所以特在此记录自己添加这个功能的过程. 首先关机的那个弹出菜单是在fra ...
- 关于webp图片格式初探
前言 不管是 PC 还是移动端,图片一直是流量大头,以苹果公司 Retina 产品为代表的高 PPI 屏对图片的质量提出了更高的要求,如何保证在图片的精细度不降低的前提下缩小图片体积,成为了一个有价值 ...
- ZYThumbnailTableView类似于小型阅读器
Demo github地址: https://github.com/liuzhiyi1992/ZYThumbnailTableView 原文地址:http://zyden.vicp.cc/zythu ...
- git使用中checkout生成临时br的问题(吓出一身冷汗啊)
git中几天前漫不经心的使用了git checkout ver_hash的命令,结果push到远程库都提示everything is up-to-date,实际神马都没提交上去啊!但看本地log中的确 ...
- Mac OS 的属性列表文件plist装换
Mac OS系统自身包含有转换plist的工具:plutil.其中-p是以human可读方式显示plist文件,而convert就是转换参数,其中支持的格式有:xml,二进制和json.下面拿一个实际 ...
- Spring Boot通过命令行启动发生FileNotFoundException
Spring Boot + Jersey 通过命令行启动会发生错误FileNotFoundException异常 异常信息如下: ERROR o.a.c.c.C.[Tomcat].[localhost ...