Description

题库链接

\[f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\times 2^j \times (j!)\]

\(S(i, j)\) 表示第二类斯特林数。对 \(998244353\) 取模。

\(1\leq n\leq 100000\)

Solution

由于 \(S(i,j)=0,i\leq j\) ,我们可以把式子改写成

\[f(n)=\sum_{i=0}^n\sum_{j=0}^n S(i,j)\times 2^j \times (j!)\]

那么

\[f(n)=\sum_{j=0}^n 2^j \times (j!)\times\sum_{i=0}^n S(i,j)\]

把 \(S(i, j)\) 的通项公式代入

\[\begin{aligned}f(n)&=\sum_{j=0}^n 2^j \times (j!)\times\sum_{i=0}^n \sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^i}{(j-k)!}\\&=\sum_{j=0}^n 2^j \times (j!)\times\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum\limits_{i=0}^n(j-k)^i}{(j-k)!}\end{aligned}\]

\[\begin{aligned}A(x)&=\sum_{i=0}^\infty \frac{(-1)^i}{i!}x^i\\B(x)&=\sum_{i=0}^\infty\frac{\sum\limits_{k=0}^ni^k}{i!}x^i\end{aligned}\]

那么

\[f(n)=\sum_{j=0}^n 2^j\times(j!)\times(A\otimes B)(j)\]

\(\text{NTT}\) 优化即可。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 100000*4, yzh = 998244353; int n, inv[N+5], a[N+5], b[N+5], len, L, R[N+5]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = quick_pow(3, (yzh-1)/(i<<1)), x, y;
if (o == -1) gn = quick_pow(gn, yzh-2);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y)%yzh;
}
}
}
}
void work() {
scanf("%d", &n); inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= n; i++) inv[i] = 1ll*inv[i]*inv[i-1]%yzh;
for (int i = 0; i <= n; i++)
if (i&1) a[i] = -inv[i]; else a[i] = inv[i];
b[0] = 1; b[1] = n+1;
for (int i = 2; i <= n; i++)
b[i] = 1ll*inv[i]*(quick_pow(i, n+1)-1)%yzh*quick_pow(i-1, yzh-2)%yzh;
for (len = 1; len <= (n<<1); len <<= 1) L++;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTT(a, 1), NTT(b, 1);
for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*b[i]%yzh;
NTT(a, -1);
for (int i = 0, inv = quick_pow(len, yzh-2); i < len; i++)
a[i] = 1ll*a[i]*inv%yzh;
int ans = 0;
for (int i = 0, ad = 1; i <= n; i++, ad = 2ll*ad%yzh*i%yzh)
(ans += 1ll*a[i]*ad%yzh) %= yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

[TJOI 2016&HEOI 2016]求和的更多相关文章

  1. [TJOI 2016&HEOI 2016]排序

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  2. [HEOI 2016] sort

    [HEOI 2016] sort 解题报告 码线段树快调废我了= = 其实这题貌似暴力分很足,直接$STL$的$SORT$就能$80$ 正解: 我们可以二分答案来做这道题 假设我们二分的答案为$a$, ...

  3. PHPStorm 2016.2 - 2016.3许可证服务器

    最快,最安全的选择,以激活您的PHPStorm 2016.2 - 2016.3,这是足够的激活服务器,软件将自动激活.该过程将不断更新,如果不工作评价写入,如果有,以激活没有列出的服务器也可以说. 通 ...

  4. Windows Server 2016 + SCO 2016 安装及配置介绍

    Windows Server 2016 + SCO 2016 安装及配置介绍 高文龙关注1人评论6332人阅读2017-02-26 23:23:02 Windows Server 2016 + SCO ...

  5. 「HEOI 2016/TJOI 2016」求和

    题目链接 戳我 \(Solution\) 先化简式子: \[f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end {Bmatrix}*2^j ...

  6. 解题:HEOI 2016 求和

    题面 我们需要知道这样一个东西(大概叫 斯特林公式?) $S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^k C_j^k(j-k)^i$ 那么就是推啊 $=\ ...

  7. HEOI 2016 游记

    闲来无事,把这玩意儿补上. OI生涯中第一次正经的考试.挂的很惨. Day -1 不小心把机油(雾)sm惹毛了. 好像没啥别的事儿. Day 0 说好了上午直接去机房,然而临时说让我们上完前两节课再去 ...

  8. 数据结构(并查集||树链剖分):HEOI 2016 tree

    [注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q ...

  9. 字符串[未AC](后缀自动机):HEOI 2016 str

    超级恶心,先后用set维护right,再用主席树维护,全部超时,本地测是AC的.放心,BZOJ上还是1S限制,貌似只有常数优化到一定境界的人才能AC吧. 总之我是精神胜利了哦耶QAQ #include ...

随机推荐

  1. 使用.NET开发AutoCAD——设计师不做画图匠(一)

    (一)前言--如何避免加班那些事 我是谁?我是一名工程设计师,有点"不务正业",在工作之余长期从事软件开发工作,开发了公路铁路行业广泛应用的设计软件.说正题之前,聊聊加班那些事.话 ...

  2. 用js来实现那些数据结构(数组篇01)

    在开始正式的内容之前,不得不说说js中的数据类型和数据结构,以及一些比较容易让人混淆的概念.那么为什么要从数组说起?数组在js中是最常见的内存数据结构,数组数据结构在js中拥有很多的方法,很多初学者记 ...

  3. 第二次作业:软件分析之Steam的前世今生

    摘要:本次作业我将介绍一下Steam的相关内容,以及对Steam的相关调研测评,以及需求分析,最后就是对Steam的建议以及在中国的发展提出相应的建议 一.相关信息      Steam是一个整合游戏 ...

  4. HDFS之RPC机制

  5. C++之异常捕获和处理

    一.简介   在C++语言中,异常处理包括:throw表达式,try语句块,一套异常类.其中,异常类用于在throw表达式和相关的catch子句之间传递异常的具体信息.exception头文件定义了最 ...

  6. Cypher语法

    cypher是neo4j官网提供的声明式查询语言,非常强大,用它可以完成任意的图谱里面的查询过滤,我们知识图谱的一期项目 基本开发完毕,后面会陆续总结学习一下neo4j相关的知识.今天接着上篇文章来看 ...

  7. node框架koa

    node的两大常见web服务器框架有express和koa,之前已经介绍过express了现在来介绍下koa吧~ koa也是express团队的出品,意在利用es7新出的async来告别"回 ...

  8. JavaScript 实现二叉树

    JavaScript 实现二叉树: // JavaScript 实现二叉树 function BinaryTree () { var Node = function (key) { this.key ...

  9. kafka---broker 保存消息

    1 .存储方式 物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个 ...

  10. Windows10下的docker安装与入门 (二)使用docker引擎在容器中运行镜像

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...