吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)
我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑:
- 第一坑 需将辅助文件
opt_utils.py的nitialize_parameters(layer_dims)函数中的 2 改成 2.0 , 保存后再重启jupyter notebook. - 第二坑 需将辅助文件
opt_utils.py的plot_decision_boundary(model, X, y)函数中的 c=y 改成 c=y[0], 保存后再重启jupyter notebook. 我的计算机环境原来是不用修改的,不知道咋回事,有天画图出毛病,得改这里.另外,不只是这个作业,其他作业关于画图的地方相应处均需修改.
坑1需修改的代码:
def initialize_parameters(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
b1 -- bias vector of shape (layer_dims[l], 1)
Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
bl -- bias vector of shape (1, layer_dims[l])
Tips:
- For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1].
This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
- In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
"""
np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])* np.sqrt(2.0 / layer_dims[l-1]) # <------- 坑1在这, 原来是2, 我们改成2.0了
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
return parameters
坑2需修改的代码:
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y[0], cmap=plt.cm.Spectral) # <----坑2在这 c=y 改成 c=y[0]
plt.show()
吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)的更多相关文章
- 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)
可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...
- 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决
问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...
- 吴恩达深度学习第1课第3周编程作业记录(2分类1隐层nn)
2分类1隐层nn, 作业默认设置: 1个输出单元, sigmoid激活函数. (因为二分类); 4个隐层单元, tanh激活函数. (除作为输出单元且为二分类任务外, 几乎不选用 sigmoid 做激 ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响
博主 撸的 该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...
- cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现
上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...
- Coursera 吴恩达 深度学习 学习笔记
神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...
随机推荐
- apigw鉴权分析(1-3)百度 AI - 鉴权方式分析
http://ai.baidu.com/docs#/Begin/top 一.访问入口 二.鉴权方式分析 1.鉴权认证方式一 - access_token - 针对HTTP API调用者 2.鉴权认证方 ...
- KNN算法简单应用
这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集 ...
- Python学习之dict和set
#coding=utf-8 # dict dict= {'bob': 40, 'andy': 30} print dict['bob'] # 通过dict提供的get方法,如果key不存在,可以返回N ...
- Dapper中条件为In的写法
今天用Dapper更新是用到了IN写法,园子里找了篇文章这样写到 传统sql in (1,2,3) 用dapper就这样写 conn.Query<Users>("SELECT * ...
- python 资产管理
python 资产管理 一.Agent 方式 1.这个方法的优点:使用简单,速度快,适合服务器较多场景使用,缺点:服务器比较占资源,性能会变低. 2.使用Agent的前提条件是客户端(服务器)特别多的 ...
- Http post请求数据分析 --作者, 你的这个需求我可以做, 我在平台上无法给你发消息和接收你的任务, 所以,如果你看到这个信息, 可以联系我.
Http post请求数据分析 作者, 你的这个需求我可以做, 我在平台上无法给你发消息和接收你的任务, 所以,如果你看到这个信息, 可以联系我. 软件需求就是不停post一个网址,然后根据返回的信息 ...
- pyspider爬取TripAdvisor
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Created on 2017-06-11 10:10:53 # Project: london f ...
- PyQuery用法详解
PyQuery是强大而又灵活的网页解析库,如果你觉得正则写起来太麻烦,如果你觉得BeautifulSoup语法太难记,如果你熟悉jQuery的语法 那么,PyQuery就是你绝佳的选择. 一.初始化方 ...
- JAVA数据库编程、JAVA XML解析技术
JDBC概述 JDBC是JAVA中提供的数据库编程API curd :数据库增删改 链接字符串:String url = "mysql :/localhost :3306/jdbc/&quo ...
- ng-model,ng-value,ng-bind,{{}}----angularJS数据绑定
最典型用法 双向绑定 <input type="text" value="{{apple}}" ng-model="apple" &g ...