我python2.7, 做吴恩达深度学习第2课第2周编程作业 Optimization Methods 时有2个坑:

  1. 第一坑 需将辅助文件 opt_utils.pynitialize_parameters(layer_dims) 函数中的 2 改成 2.0 , 保存后再重启jupyter notebook.
  2. 第二坑 需将辅助文件 opt_utils.pyplot_decision_boundary(model, X, y) 函数中的 c=y 改成 c=y[0], 保存后再重启jupyter notebook. 我的计算机环境原来是不用修改的,不知道咋回事,有天画图出毛病,得改这里.另外,不只是这个作业,其他作业关于画图的地方相应处均需修改.

坑1需修改的代码:

def initialize_parameters(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network Returns:
parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
b1 -- bias vector of shape (layer_dims[l], 1)
Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
bl -- bias vector of shape (1, layer_dims[l]) Tips:
- For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1].
This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
- In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
""" np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])* np.sqrt(2.0 / layer_dims[l-1]) # <------- 坑1在这, 原来是2, 我们改成2.0了
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
assert(parameters['W' + str(l)].shape == layer_dims[l], 1) return parameters

坑2需修改的代码:

def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y[0], cmap=plt.cm.Spectral) # <----坑2在这 c=y 改成 c=y[0]
plt.show()

吴恩达深度学习第2课第2周编程作业 的坑(Optimization Methods)的更多相关文章

  1. 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)

    可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...

  2. 吴恩达深度学习第4课第3周编程作业 + PIL + Python3 + Anaconda环境 + Ubuntu + 导入PIL报错的解决

    问题描述: 做吴恩达深度学习第4课第3周编程作业时导入PIL包报错. 我的环境: 已经安装了Tensorflow GPU 版本 Python3 Anaconda 解决办法: 安装pillow模块,而不 ...

  3. 吴恩达深度学习第1课第3周编程作业记录(2分类1隐层nn)

    2分类1隐层nn, 作业默认设置: 1个输出单元, sigmoid激活函数. (因为二分类); 4个隐层单元, tanh激活函数. (除作为输出单元且为二分类任务外, 几乎不选用 sigmoid 做激 ...

  4. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  5. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  6. 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧

    由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...

  7. 深度学习 吴恩达深度学习课程2第三周 tensorflow实践 参数初始化的影响

    博主 撸的  该节 代码 地址 :https://github.com/LemonTree1994/machine-learning/blob/master/%E5%90%B4%E6%81%A9%E8 ...

  8. cousera 吴恩达 深度学习 第一课 第二周 作业 过拟合的表现

    上图是课上的编程作业运行10000次迭代后,输出每一百次迭代 训练准确度和测试准确度的走势图,可以看到在600代左右测试准确度为最大的,74%左右, 然后掉到70%左右,再掉到68%左右,然后升到70 ...

  9. Coursera 吴恩达 深度学习 学习笔记

    神经网络和深度学习 Week 1-2 神经网络基础 Week 3 浅层神经网络 Week 4 深层神经网络 改善深层神经网络 Week 1 深度学习的实用层面 Week 2 优化算法 Week 3 超 ...

随机推荐

  1. 新概念英语(1-97)A Small Blue Case

    Lesson 97 A small blue case 一只蓝色的小箱子 Listen to the tape then answer this question. Does Mr. Hall get ...

  2. logback中批量插入数据库的参考代码

    protected void insertProperties(Map<String, String> mergedMap, Connection connection, long eve ...

  3. IT 必备电脑快捷键

    IT 必备电脑快捷键 键盘上除了有字母.数字之外,还有一些特殊的按键:ctrl.shift.alt.tab ● ctrl键是英语control“控制”的意思,这个按键,单独按没有任何作用,都要和其他的 ...

  4. 如何使用Visual Studio 2017自带的源代码反编译功能

    反编译C#源代码,大家可能第一时间想到 .NET Reflector 这个工具.但是这个工具反编译出来的代码跟实际源码还是有一定差距的,阅读起来不是很便利. 本人在查看Visual Studio 20 ...

  5. JS字符串和数组常用方法

    1.indexOf() – 返回字符串中一个字符第一处出现的索引,接收2个参数:要查找的字符,从哪个位置开始查找:.lastIndexOf()--返回字符串中某一个字符最后一次出现的索引值. 如果没有 ...

  6. Windows下Java开发环境安装与配置

    1. 前往Oracle网站下载JDK程序并安装. http://www.oracle.com/technetwork/java/javase/downloads/index.html 目前最新的版本为 ...

  7. 从零开始系列之vue全家桶(6)实战前的设计

    搭建好基本框架后我们应该先想一想个人博客应该有哪些功能呢? 为了更好的适应企业的要求,这里我将搭建一个非典型的博客. 在全部采用单页开发的情况下,使用vue-router,路由分别设置home.abo ...

  8. [LeetCode] Base 7 基数七

    Given an integer, return its base 7 string representation. Example 1: Input: 100 Output: "202&q ...

  9. [WC 2014]紫荆花之恋

    Description 强强和萌萌是一对好朋友.有一天他们在外面闲逛,突然看到前方有一棵紫荆树.这已经是紫荆花飞舞的季节了,无数的花瓣以肉眼可见的速度从紫荆树上长了出来. 仔细看看的话,这个大树实际上 ...

  10. [HAOI2008]硬币购物

    题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一 ...