001_python实现数据分析
一、
# coding:utf8
# !/usr/bin/python
# import numpy as np
import pandas as pd
import np def example2():
'''
Describing a numeric ``Series``.
:return:
'''
s = pd.Series([1, 2, 3])
print s.describe()
'''
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
'''
def example3():
'''
Describing a categorical ``Series``.
:return:
'''
s = pd.Series(['a', 'a', 'b', 'c'])
print s.describe()
'''
count 4
unique 3
top a
freq 2
dtype: object
'''
def example4():
'''
Describing a timestamp ``Series``.
:return:
'''
s = pd.Series([
np.datetime64("2000-01-01"),
np.datetime64("2010-01-01"),
np.datetime64("2010-01-01")
])
print s.describe()
'''
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object
'''
def example5():
'''
Describing a ``DataFrame``. By default only numeric fields are returned.
:return:
'''
df = pd.DataFrame({'categorical': pd.Categorical(['d', 'e', 'f']),
'numeric': [1, 2, 3],
'object': ['a', 'b', 'c']})
print df.describe()
'''
#Describing all columns of a ``DataFrame`` regardless of data type.
print df.describe(include='all')
#Describing a column from a ``DataFrame`` by accessing it as an attribute.
print df.numeric.describe()
#Including only numeric columns in a ``DataFrame`` description.
print df.describe(include=[np.number])
#Including only string columns in a ``DataFrame`` description.
print df.describe(include=[np.object])
#Including only categorical columns from a ``DataFrame`` description.
print df.describe(include=['category'])
#Excluding numeric columns from a ``DataFrame`` description.
print df.describe(exclude=[np.number])
#Excluding object columns from a ``DataFrame`` description.
print df.describe(exclude=[np.object])
'''
def example1():
dic1={'000':{'a':1,'b':2,'c':3},'001':{'d':4,'e':5,'f':6}}
df2=pd.DataFrame(dic1)
# print df2.describe()
'''
000 001
count 3.0 3.0
mean 2.0 5.0
std 1.0 1.0
min 1.0 4.0
25% 1.5 4.5
50% 2.0 5.0
75% 2.5 5.5
max 3.0 6.0
'''
print "返回非NAN数据项数量=>count()\n{count}\n".format(count = df2.describe().count())
print "返回中位数,等价第50位百分位数的值=>median()\n{median}\n".format(median = df2.describe().median())
print "返回数据的众值=>mode()\n{mode}\n".format(mode = df2.describe().mode())
print "返回数据的标准差(描述离散度)=>std()\n{std}\n".format(std = df2.describe().std())
print "返回方差=>var()\n{var}\n".format(var = df2.describe().var())
print "偏态系数(skewness,表示数据分布的对称程度)=>skew()\n{skew}\n".format(skew = df2.describe().skew()) def main():
example1()
if __name__ == '__main__':
main()
输出=>
返回非NAN数据项数量=>count()
000 8
001 8
dtype: int64
返回中位数,等价第50位百分位数的值=>median()
000 2.00
001 4.75
dtype: float64
返回数据的众值=>mode()
000 001
0 1.0 5.0
1 2.0 NaN
2 3.0 NaN
返回数据的标准差(描述离散度)=>std()
000 0.801784
001 1.603567
dtype: float64
返回方差=>var()
000 0.642857
001 2.571429
dtype: float64
偏态系数(skewness,表示数据分布的对称程度)=>skew()
000 0.000000
001 -1.299187
dtype: float64
001_python实现数据分析的更多相关文章
- 利用Python进行数据分析 基础系列随笔汇总
一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 利用Python进行数据分析(3) 使用IPython提高开发效率
一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执 ...
随机推荐
- markdown 基本操作
无序列表:输入-之后输入空格有序列表:输入数字+“.”之后输入空格任务列表:-[空格]空格 文字标题:ctrl+数字表格:ctrl+t生成目录:[TOC]按回车选中一整行:ctrl+l选中单词:ctr ...
- 不可思议的纯 CSS 实现鼠标跟随效果
直接进入正题,鼠标跟随,顾名思义,就是元素会跟随着鼠标的移动而作出相应的运动.大概类似于这样: 通常而言,CSS 负责表现,JavaScript 负责行为.而鼠标跟随这种效果属于行为,要实现通常都需要 ...
- 【机器学习】--EM算法从初识到应用
一.前述 Em算法是解决数学公式的一个算法,是一种无监督的学习. EM算法是一种解决存在隐含变量优化问题的有效方法.EM算法是期望极大(Expectation Maximization)算法的简称,E ...
- Java中的基本类型转换,数据溢出原理
java中的数据类型 java是一种强类型语言,在java中,数据类型主要有两大类,基本数据类型和引用数据类型,不同的数据类型有不同的数据存储方式和分配的内存大小. 基本数据类型中,各数据类型所表示的 ...
- Pycharm2018永久破解的办法
Pycharm2018永久破解的具体步骤: 一.下载pycharm2018专业版 JetBrains官网:https://www.jetbrains.com/pycharm/download/#sec ...
- Java进阶篇设计模式之三 ----- 建造者模式和原型模式
前言 在上一篇中我们学习了工厂模式,介绍了简单工厂模式.工厂方法和抽象工厂模式.本篇则介绍设计模式中属于创建型模式的建造者模式和原型模式. 建造者模式 简介 建造者模式是属于创建型模式.建造者模式使用 ...
- 使用redis有序集合sorted set设计高效查询ip所在地
1.将纯真版ip数据 xxx.data 导入至 redis(整个过程只花费了几秒) 引入nuget包 CSRedisCore,使用方法见:https://github.com/2881099/csr ...
- JavaScript夯实基础系列(二):闭包
在JavaScript中函数是一等公民.所谓一等公民是指函数跟其他对象一样,很普通,可以进行把函数存在数组中.作为参数传递.赋值给变量等操作.当函数作为另一个函数的返回值在外部调用时,跟该函数在函 ...
- es6涉及的那点东西
前言 ECMAScript 6(以下简称ES6)是JavaScript语言的下一代标准.因为当前版本的ES6是在2015年发布的,所以又称ECMAScript 2015. 也就是说,ES6就是ES20 ...
- k8s应用机密信息与配置管理(九)--技术流ken
secret 应用启动过程中可能需要一些敏感信息,比如访问数据库的用户名密码或者秘钥.将这些信息直接保存在容器镜像中显然不妥,Kubernetes 提供的解决方案是 Secret. Secret 会以 ...