001_python实现数据分析
一、
# coding:utf8
# !/usr/bin/python
# import numpy as np
import pandas as pd
import np def example2():
'''
Describing a numeric ``Series``.
:return:
'''
s = pd.Series([1, 2, 3])
print s.describe()
'''
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64
'''
def example3():
'''
Describing a categorical ``Series``.
:return:
'''
s = pd.Series(['a', 'a', 'b', 'c'])
print s.describe()
'''
count 4
unique 3
top a
freq 2
dtype: object
'''
def example4():
'''
Describing a timestamp ``Series``.
:return:
'''
s = pd.Series([
np.datetime64("2000-01-01"),
np.datetime64("2010-01-01"),
np.datetime64("2010-01-01")
])
print s.describe()
'''
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object
'''
def example5():
'''
Describing a ``DataFrame``. By default only numeric fields are returned.
:return:
'''
df = pd.DataFrame({'categorical': pd.Categorical(['d', 'e', 'f']),
'numeric': [1, 2, 3],
'object': ['a', 'b', 'c']})
print df.describe()
'''
#Describing all columns of a ``DataFrame`` regardless of data type.
print df.describe(include='all')
#Describing a column from a ``DataFrame`` by accessing it as an attribute.
print df.numeric.describe()
#Including only numeric columns in a ``DataFrame`` description.
print df.describe(include=[np.number])
#Including only string columns in a ``DataFrame`` description.
print df.describe(include=[np.object])
#Including only categorical columns from a ``DataFrame`` description.
print df.describe(include=['category'])
#Excluding numeric columns from a ``DataFrame`` description.
print df.describe(exclude=[np.number])
#Excluding object columns from a ``DataFrame`` description.
print df.describe(exclude=[np.object])
'''
def example1():
dic1={'000':{'a':1,'b':2,'c':3},'001':{'d':4,'e':5,'f':6}}
df2=pd.DataFrame(dic1)
# print df2.describe()
'''
000 001
count 3.0 3.0
mean 2.0 5.0
std 1.0 1.0
min 1.0 4.0
25% 1.5 4.5
50% 2.0 5.0
75% 2.5 5.5
max 3.0 6.0
'''
print "返回非NAN数据项数量=>count()\n{count}\n".format(count = df2.describe().count())
print "返回中位数,等价第50位百分位数的值=>median()\n{median}\n".format(median = df2.describe().median())
print "返回数据的众值=>mode()\n{mode}\n".format(mode = df2.describe().mode())
print "返回数据的标准差(描述离散度)=>std()\n{std}\n".format(std = df2.describe().std())
print "返回方差=>var()\n{var}\n".format(var = df2.describe().var())
print "偏态系数(skewness,表示数据分布的对称程度)=>skew()\n{skew}\n".format(skew = df2.describe().skew()) def main():
example1()
if __name__ == '__main__':
main()
输出=>
返回非NAN数据项数量=>count()
000 8
001 8
dtype: int64
返回中位数,等价第50位百分位数的值=>median()
000 2.00
001 4.75
dtype: float64
返回数据的众值=>mode()
000 001
0 1.0 5.0
1 2.0 NaN
2 3.0 NaN
返回数据的标准差(描述离散度)=>std()
000 0.801784
001 1.603567
dtype: float64
返回方差=>var()
000 0.642857
001 2.571429
dtype: float64
偏态系数(skewness,表示数据分布的对称程度)=>skew()
000 0.000000
001 -1.299187
dtype: float64
001_python实现数据分析的更多相关文章
- 利用Python进行数据分析 基础系列随笔汇总
一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ...
- 利用Python进行数据分析(10) pandas基础: 处理缺失数据
数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 利用Python进行数据分析(3) 使用IPython提高开发效率
一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执 ...
随机推荐
- c++ 之模板进阶
c++中的多态主要体现在模板与继承上. 继承可以理解为有相互关系的不同数据结构的集合. 而模板则是完全独立的数据结构,彼此无需依赖 在函数中使用模板, 可以根据函数传入的参数自动推导类型,从而省略到很 ...
- 升讯威微信营销系统开发实践:(3)功能介绍与此项目推广过程的一些体会( 完整开源于 Github)
GitHub:https://github.com/iccb1013/Sheng.WeixinConstruction因为个人精力时间有限,不会再对现有代码进行更新维护,不过微信接口比较稳定,经测试至 ...
- SUSE12SP3-Zookeeper安装
直接使用root账号 1.zookeeper安装 将zookeeper-3.4.13.tar.gz安装包放置指定目录 sudo tar -zxvf zookeeper-3.4.13.tar.gz -C ...
- ansible基础-Jinja2模版 | 过滤器
Jinja2模版介绍 注:本文demo使用ansible2.7稳定版 在ansible基础-变量的「8.2 模版使用变量」章节中关于模版与变量也有所提及,有兴趣的同学可以去回顾一下. ansible通 ...
- Spring之旅第三篇-Spring配置详解
上一篇学习了IOC的概念并初步分析了实现原理,这篇主要学习Spring的配置,话不多说,让我们开始! 一.Bean元素配置 1.1 基本配置 看一个最基本的bean配置 <bean name=& ...
- 《深入理解Java虚拟机》-----第3章 垃圾收集器与内存分配策略
Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的“高墙”,墙外面的人想进去,墙里面的人却想出来. 3.1 概述 说起垃圾收集(Garbage Collection,GC),大部分人都把这 ...
- 《HelloGitHub》第 27 期
公告 网站新增了简单的搜索功能,可以通过项目名称或地址搜索.查看项目.欢迎star和推荐项目,我们一只在路上,希望志同道合者加入进来. 现招募专栏负责人: C# Java <HelloGitHu ...
- LindDotNetCore~ISoftDelete软删除接口
回到目录 概念 ISoftDelete即软删除,数据在进行delete后不会从数据库清除,而只是标记一个状态,在业务范围里都不能获取到这个数据,这在ORM框架里还是比较容易实现的,对传统的ado来说需 ...
- [Vue] vuex进行组件间通讯
vue 组件之间数据传输(vuex) 初始化 store src/main.js import Vuex from "vuex"; Vue.use(Vuex); new Vue({ ...
- winform中使用委托进行窗体之间的传值
一.传统的方式 创建一个公共数据资源类,用于存储窗体2的TextBox的值: public class ComValue { public static string Txtvalue { get; ...