4513: [Sdoi2016]储能表

题意:求$$

\sum_{i=0}{n-1}\sum_{j=0}{m-1} max((i\oplus j)-k,0)

\[
***

写出来好开心啊...虽然思路不完全是自己的但代码是按照自己的想法用记忆化搜索写的啊

</br>

小于k的直接不用考虑
考虑二进制上数位DP,从高到低考虑每一位
$n,m,k$变成了三条天际线,小于等于$n,m$并且大于等于$k$
$f[i][s1][s2][s3]$表示第i位三条天际线状态s1s2s3时满足条件的方案数和异或和
每一位枚举i和j这一位是什么转移就行了
最后的答案就是 异或和-方案数*k
然后计算某一位异或和的贡献时需要乘上2的幂和后面的方案数
</br>
然后本题不一样的地方在于**必须把三条天际线记忆化**,之前的题目不用记忆化是因为只有一种转移会到天际线,而本题有多种转移可以到相同的天际线...不然T成暴力分

</br>
```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define pii pair<ll, ll>
#define MP make_pair
#define fir first
#define sec second
const int N=65;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}

ll n, m, k, p, mi[N]; int tot;
pii f[N][2][2][2], im;
struct meow{
int n, a[N];
int& operator[](int x) {return a[x];}
void read(ll x) {memset(a,0,sizeof(a));n=0; while(x>0) a[++n]=x&1, x>>=1;}
void print() {printf("digit ");for(int i=n; i>=1; i--) printf("%d",a[i]);puts("");}
}a, b, c;

inline void mod(ll &x) {if(x>=p) x-=p;}
pii dfs(int d, int s1, int s2, int s3) {
if(d==0) return MP(1, 0); //printf("dfs %d %d %d %d\n",d,s1,s2,s3);
if(f[d][s1][s2][s3] != im) return f[d][s1][s2][s3];
pii now(0, 0);
int lim1 = s1 ? a[d] : 1, lim2 = s2 ? b[d] : 1, lim3 = s3 ? c[d] : 0;
//printf("lim %d %d %d\n",lim1,lim2,lim3);
for(int i=0; i<=lim1; i++)
for(int j=0; j<=lim2; j++) if((i^j)>=lim3) { //printf("ij %d %d %d %lld\n",i,j, i^j, (i^j)*mi[d-1]);
pii t = dfs(d-1, s1 && i==lim1, s2 && j==lim2, s3 && (i^j)==lim3);
mod(now.fir += t.fir);
mod(now.sec += (t.sec + (i^j) * mi[d-1]%p * t.fir%p)%p);
}
//printf("now %d %d %d %d %lld %lld\n\n",d,s1,s2,s3,now.fir, now.sec);
return f[d][s1][s2][s3]=now;
}
int main() {
//freopen("menci_table.in","r",stdin);
//freopen("menci_table.out","w",stdout);
int T=read();
im=MP(-1, -1);
while(T--) {
n=read(); m=read(); k=read(); p=read();
n--; m--;
mi[0]=1; for(int i=1; i<=60; i++) mi[i] = (mi[i-1]<<1)%p;
a.read(n); b.read(m); c.read(k);
//a.print(); b.print(); c.print();
tot=max(a.n, max(b.n, c.n));
for(int i=0; i<=tot; i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) f[i][j][k][0]=f[i][j][k][1]=im;
pii ans = dfs(tot, 1, 1, 1);
//printf("ans %lld %lld\n",ans.sec,ans.fir);
printf("%lld\n", (ans.sec - ans.fir*(k%p)%p + p)%p);
}
}
```\]

BZOJ 4513: [Sdoi2016]储能表 [数位DP !]的更多相关文章

  1. BZOJ.4513.[SDOI2016]储能表(数位DP)

    BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...

  2. 4513: [Sdoi2016]储能表 数位DP

    国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否 ...

  3. 【BZOJ4513】[Sdoi2016]储能表 数位DP

    [BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...

  4. bzoj 4513 [Sdoi2016]储能表

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4513 题解 要求的式子 用数位dp的方法去做 我们把式子拆开 变成 $\sum_{i=0}^ ...

  5. [SDOI2016]储能表——数位DP

    挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...

  6. BZOJ4513: [Sdoi2016]储能表(数位dp)

    题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...

  7. [bzoj4513][SDOI2016]储能表——数位dp

    题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...

  8. 4513: [Sdoi2016]储能表

    4513: [Sdoi2016]储能表 链接 分析: 数位dp. 横坐标和纵坐标一起数位dp,分别记录当前横纵坐标中这一位是否受n或m的限制,在记录一维表示当前是否已经大于k了. 然后需要两个数组记录 ...

  9. 搜索(四分树):BZOJ 4513 [SDOI2016 Round1] 储能表

    4513: [Sdoi2016]储能表 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 213[Submit][Status] ...

随机推荐

  1. POJ 2531 暴力深搜

    Network Saboteur Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13494   Accepted: 6543 ...

  2. c语言基础学习05

    =============================================================================涉及到的知识点有:for循环有两种写法.数组. ...

  3. c++(选择排序)

    选择排序是和冒泡排序差不多的一种排序.和冒泡排序交换相连数据不一样的是,选择排序只有在确定了最小的数据之后,才会发生交换.怎么交换呢?我们可以以下面一组数据作为测试: 2, 1, 5, 4, 9 第一 ...

  4. angular $stateProvider 路由的使用

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  5. LockSupport理解

    一.背景 在看并发包源码的时候看见过LockSupport,今天恰巧看到LockSupport字眼,于是看下jdk1.7中的源码结构.想着它应该是运用多线程的锁工具的,到底似乎怎么实现的呢? 二.使用 ...

  6. zzuli oj 1134 字符串转换

    题目链接: https://acm.zzuli.edu.cn/zzuliacm/problem.php?id=1134 Description 输入一个以回车结束的字符串,它由数字和字母组成,请过滤掉 ...

  7. [基础常识]申请免费SSL证书 - 阿里云云盾证书 - Digicert+Symantec 免费型DV SSL

    https://bbs.aliyun.com/read/573933.html?spm=5176.10695662.1996646101.searchclickresult.72be06dct9Qvw ...

  8. LNMP安装Let’s Encrypt 免费SSL证书方法:自动安装与手动配置Nginx

    前几天介绍了最新StartSSL免费SSL申请与配置,很多人看到部落介绍SSL证书安装时总是推荐了OneinStack,因为OneinStack提供了一键添加和配置Let's Encrypt 免费SS ...

  9. CentOS 7安装Oracle 11gR2以及设置自启动

    一.环境准备 1.正确无误的CentOS 7系统环境 CentOS 7安装:http://www.cnblogs.com/VoiceOfDreams/p/8043958.html 2.正确的JDK环境 ...

  10. php实现监控在线服务应用程序小栗子

    下面我就给大家举个栗子(例子) 某单位需要实现监控服务器状态,和监控服务器应用网站,还有需要监控服务器的中间件,数据库状态监控.听到这个任务是不是恨透头疼,这想起来是不是头疼.还好有系统可用,但是我现 ...