BZOJ 4513: [Sdoi2016]储能表 [数位DP !]
4513: [Sdoi2016]储能表
题意:求$$
\sum_{i=0}{n-1}\sum_{j=0}{m-1} max((i\oplus j)-k,0)
***
写出来好开心啊...虽然思路不完全是自己的但代码是按照自己的想法用记忆化搜索写的啊
</br>
小于k的直接不用考虑
考虑二进制上数位DP,从高到低考虑每一位
$n,m,k$变成了三条天际线,小于等于$n,m$并且大于等于$k$
$f[i][s1][s2][s3]$表示第i位三条天际线状态s1s2s3时满足条件的方案数和异或和
每一位枚举i和j这一位是什么转移就行了
最后的答案就是 异或和-方案数*k
然后计算某一位异或和的贡献时需要乘上2的幂和后面的方案数
</br>
然后本题不一样的地方在于**必须把三条天际线记忆化**,之前的题目不用记忆化是因为只有一种转移会到天际线,而本题有多种转移可以到相同的天际线...不然T成暴力分
</br>
```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define pii pair<ll, ll>
#define MP make_pair
#define fir first
#define sec second
const int N=65;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll n, m, k, p, mi[N]; int tot;
pii f[N][2][2][2], im;
struct meow{
int n, a[N];
int& operator[](int x) {return a[x];}
void read(ll x) {memset(a,0,sizeof(a));n=0; while(x>0) a[++n]=x&1, x>>=1;}
void print() {printf("digit ");for(int i=n; i>=1; i--) printf("%d",a[i]);puts("");}
}a, b, c;
inline void mod(ll &x) {if(x>=p) x-=p;}
pii dfs(int d, int s1, int s2, int s3) {
if(d==0) return MP(1, 0); //printf("dfs %d %d %d %d\n",d,s1,s2,s3);
if(f[d][s1][s2][s3] != im) return f[d][s1][s2][s3];
pii now(0, 0);
int lim1 = s1 ? a[d] : 1, lim2 = s2 ? b[d] : 1, lim3 = s3 ? c[d] : 0;
//printf("lim %d %d %d\n",lim1,lim2,lim3);
for(int i=0; i<=lim1; i++)
for(int j=0; j<=lim2; j++) if((i^j)>=lim3) { //printf("ij %d %d %d %lld\n",i,j, i^j, (i^j)*mi[d-1]);
pii t = dfs(d-1, s1 && i==lim1, s2 && j==lim2, s3 && (i^j)==lim3);
mod(now.fir += t.fir);
mod(now.sec += (t.sec + (i^j) * mi[d-1]%p * t.fir%p)%p);
}
//printf("now %d %d %d %d %lld %lld\n\n",d,s1,s2,s3,now.fir, now.sec);
return f[d][s1][s2][s3]=now;
}
int main() {
//freopen("menci_table.in","r",stdin);
//freopen("menci_table.out","w",stdout);
int T=read();
im=MP(-1, -1);
while(T--) {
n=read(); m=read(); k=read(); p=read();
n--; m--;
mi[0]=1; for(int i=1; i<=60; i++) mi[i] = (mi[i-1]<<1)%p;
a.read(n); b.read(m); c.read(k);
//a.print(); b.print(); c.print();
tot=max(a.n, max(b.n, c.n));
for(int i=0; i<=tot; i++) for(int j=0;j<2;j++) for(int k=0;k<2;k++) f[i][j][k][0]=f[i][j][k][1]=im;
pii ans = dfs(tot, 1, 1, 1);
//printf("ans %lld %lld\n",ans.sec,ans.fir);
printf("%lld\n", (ans.sec - ans.fir*(k%p)%p + p)%p);
}
}
```\]
BZOJ 4513: [Sdoi2016]储能表 [数位DP !]的更多相关文章
- BZOJ.4513.[SDOI2016]储能表(数位DP)
BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0} ...
- 4513: [Sdoi2016]储能表 数位DP
国际惯例的题面: 听说这题的正解是找什么规律,数位DP是暴力......好的,我就写暴力了QAQ.我们令f[i][la][lb][lc]表示二进制从高到低考虑位数为i(最低位为1),是否顶n上界,是否 ...
- 【BZOJ4513】[Sdoi2016]储能表 数位DP
[BZOJ4513][Sdoi2016]储能表 Description 有一个 n 行 m 列的表格,行从 0 到 n−1 编号,列从 0 到 m−1 编号.每个格子都储存着能量.最初,第 i 行第 ...
- bzoj 4513 [Sdoi2016]储能表
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4513 题解 要求的式子 用数位dp的方法去做 我们把式子拆开 变成 $\sum_{i=0}^ ...
- [SDOI2016]储能表——数位DP
挺隐蔽的数位DP.少见 其实减到0不减了挺难处理.....然后就懵了. 其实换个思路: xor小于k的哪些都没了, 只要留下(i^j)大于等于k的那些数的和以及个数, 和-个数*k就是答案 数位DP即 ...
- BZOJ4513: [Sdoi2016]储能表(数位dp)
题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...
- [bzoj4513][SDOI2016]储能表——数位dp
题目大意 求 \[\sum_{i = 0}^{n-1}\sum_{j=0}^{m-1} max((i\ xor\ j)\ -\ k,\ 0)\ mod\ p\] 题解 首先,开始并没有看出来这是数位d ...
- 4513: [Sdoi2016]储能表
4513: [Sdoi2016]储能表 链接 分析: 数位dp. 横坐标和纵坐标一起数位dp,分别记录当前横纵坐标中这一位是否受n或m的限制,在记录一维表示当前是否已经大于k了. 然后需要两个数组记录 ...
- 搜索(四分树):BZOJ 4513 [SDOI2016 Round1] 储能表
4513: [Sdoi2016]储能表 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 213[Submit][Status] ...
随机推荐
- SPI、I2C、UART(转)
UART与USART(转) UART需要固定的波特率,就是说两位数据的间隔要相等. UART总线是异步串口,一般由波特率产生器(产生的波特率等于传输波特率的16倍).UART接收器.UART发送器组成 ...
- ThoughtWorks University之旅 —— 印度游记
ThoughtWorks University是ThoughtWorks为新加入的员工提供的入职培训项目之一,会将世界各地office新入职的员工一起带到印度浦那,参加一次为期5周的培训,内容涵盖了公 ...
- [国嵌攻略][092][UDP网络程序设计]
server.c #include <sys/socket.h> #include <netinet/in.h> #include <strings.h> #inc ...
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- :nth-child(n)
规定属于其父元素的第二个子元素的每个 p 的背景色: p:nth-child(2) { background:#ff0000; } 1定义和用法 :nth-child(n) 选择器匹配属于其父元素的第 ...
- Python3 的注释
单行注释 # 这是一个注释 print("Hello, World!") 多行注释 1:3个单引号 ''' 这是多行注释,用三个单引号 这是多行注释,用三个单引号 这是多行注释,用 ...
- git学习网址
git的学习网址:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/
- mysql主从同步(3)-percona-toolkit工具(数据一致性监测、延迟监控)使用梳理
转自:http://www.cnblogs.com/kevingrace/p/6261091.html 在mysql工作中接触最多的就是mysql replication mysql在复制方面还是会有 ...
- apache日志管理【转】
web服务器日志轮循比较好的方式有三种:第一种方法是利用Linux系统自身的日志文件轮循机制:logrotate:第二种方法是利用apache自带的日志轮循程序rotatelogs:第三种是使用在ap ...
- <script>元素在XHTML中的用法
编写XHTML代码的规则要比编写HTML严格得多,例如如下代码: <script type="text/javascript"> function compare(a, ...