题意:

一棵树,修改一个点的颜色,询问两点路径上每种颜色的权值$val[c]$*出现次数的权值$cou[w[c]]$的和


sro VFK

树上莫队

按照王室联邦的方法分块,块的大小直径个数有保证,并不需要连通

和带修改莫队一样按照$(pos[u],pos[v],tim)$排序

维护$u,v,cur$三个点,以及每个节点的访问状态$vis[]$,每种颜色出现次数$cou[]$,当前答案$now$

如何移动?

时间移动和序列上一样

$u,v$移动到$u,v'$

$Path(u,v)=Path(u,root) \oplus Path(v,root) \oplus lca(u,v)$

先不管$lca$,令$T(u,v)=Path(u,root) \oplus Path(v,root)$

$T(u,v')=Path(u,root) \oplus Path(v',root)$

经计算$T(u,v')=T(u,v) \oplus T(v,v')$

画一下图很好理解

所以移动的时候我们只要更新$v$到$v'$路径上除去$lca$的所有点就可以了,最后对于每个询问额外把$lca(u,v)$加上

分块大小貌似稍小一点比较好

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,k,Q,a[N],t[N],op,x,y, val[N];
ll w[N]; struct edge{int v,ne;} e[N<<];
int cnt,h[N];
inline void ins(int u,int v){
e[++cnt]=(edge){v,h[u]}; h[u]=cnt;
e[++cnt]=(edge){u,h[v]}; h[v]=cnt;
}
int block,m,pos[N];
int st[N],top;
void dfs(int u,int fa){
int bot=top;
for(int i=h[u];i;i=e[i].ne) if(e[i].v!=fa){
dfs(e[i].v, u);
if(top-bot>=block){
m++;
while(top!=bot) pos[st[top--]]=m;
}
}
st[++top]=u;
} int fa[N][], deep[N];
void dfs(int u){
for(int i=; (<<i)<=deep[u]; i++)
fa[u][i]=fa[ fa[u][i-] ][i-];
for(int i=h[u];i;i=e[i].ne)
if(e[i].v!=fa[u][]){
deep[ e[i].v ]=deep[u]+;
fa[ e[i].v ][]=u;
dfs(e[i].v);
}
}
inline int lca(int x,int y){
if(deep[x]<deep[y]) swap(x, y);
int bin=deep[x]-deep[y];
for(int i=;i<;i++) if((<<i)&bin) x=fa[x][i];
for(int i=;i>=;i--)
if(fa[x][i]!=fa[y][i]) x=fa[x][i], y=fa[y][i];
return x==y ? x : fa[x][];
} struct cmeow{int u,next,last;} cq[N];
struct meow{
int u,v,tim,id;
bool operator <(const meow &a) const {
return pos[u]==pos[a.u] ? (pos[v]==pos[a.v] ? tim<a.tim : pos[v]<pos[a.v]) : pos[u]<pos[a.u];
}
}q[N];
int p,tim,u,v,cur; ll now,ans[N];
int vis[N], cou[N];
inline void cha(int u,int d){
int &c=a[u];
if(vis[u]){
now-= w[cou[c]] * val[c]; now-= w[cou[d]] * val[d];
cou[c]--; cou[d]++;
now+= w[cou[c]] * val[c]; now+= w[cou[d]] * val[d];
}
c=d;
}
inline void Xor(int u){
int c=a[u];
now-= w[cou[c]] * val[c];
vis[u] ? cou[c]-- : cou[c]++; vis[u]^=;
now+= w[cou[c]] * val[c];
}
void move(int x,int y){
if(deep[x]<deep[y]) swap(x, y);
while(deep[x]>deep[y]) Xor(x), x=fa[x][];// printf("%d %lld\n",x,now);
while(x!=y) Xor(x), Xor(y), x=fa[x][], y=fa[y][];
}
void modui(){
u=; v=;
for(int i=;i<=p;i++){
while(cur<q[i].tim) cur++, cha(cq[cur].u, cq[cur].next);
while(cur>q[i].tim) cha(cq[cur].u, cq[cur].last), cur--;
if(u!=q[i].u) move(u, q[i].u), u=q[i].u;
if(v!=q[i].v) move(v, q[i].v), v=q[i].v; int anc=lca(u, v);
Xor(anc); ans[q[i].id]= now; Xor(anc);
}
}
int main(){
freopen("in","r",stdin);
n=read(); k=read(); Q=read();
for(int i=;i<=k;i++) val[i]=read();
for(int i=;i<=n;i++) w[i]=read()+w[i-];
for(int i=;i<n ;i++) ins(read(), read() );
for(int i=;i<=n;i++) a[i]=t[i]=read(); block=pow(n,(double)1.9/);
dfs(, );
while(top) pos[st[top--]]=m;
dfs(); for(int i=;i<=Q;i++){
op=read(); x=read(); y=read();
if(op) p++,q[p]=(meow){x,y,tim,p};
else tim++,cq[tim]=(cmeow){x,y,t[x]}, t[x]=y;
}
sort(q+, q++p);
modui();
for(int i=;i<=p;i++) printf("%lld\n", ans[i]);
}

【WC2013】糖果公园 [树上莫队]的更多相关文章

  1. BZOJ3052:[WC2013]糖果公园(树上莫队)

    Description Input Output Sample Input 4 3 51 9 27 6 5 12 33 13 41 2 3 21 1 21 4 20 2 11 1 21 4 2 Sam ...

  2. P4074 [WC2013]糖果公园 树上莫队带修改

    题目链接 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩. 糖果公园的结构十分奇特,它由 nn 个游览点构 ...

  3. BZOJ.3052.[WC2013]糖果公园(树上莫队 带修改莫队)

    题目链接 BZOJ 当然哪都能交(都比在BZOJ交好),比如UOJ #58 //67376kb 27280ms //树上莫队+带修改莫队 模板题 #include <cmath> #inc ...

  4. BZOJ 3052: [wc2013]糖果公园 | 树上莫队

    题目: UOJ也能评测 题解 请看代码 #include<cstdio> #include<algorithm> #include<cstring> #includ ...

  5. 【WC2013】 糖果公园 - 树上莫队

    问题描述 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引来了许多贪吃的小朋友来糖果公园游玩.糖果公园的结构十分奇特,它由 n 个游览点构成, ...

  6. 洛谷P4074 [WC2013]糖果公园(莫队)

    传送门 总算会树形莫队了…… 上次听说树形莫队是给树分块,实在看不懂.然后用括号序列的方法做总算能弄明白了 先说一下什么是括号序列,就是在$dfs$的时候,进入的时候记录一下,出去的时候也记录一下 拿 ...

  7. LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)

    传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...

  8. luogu4074 [WC2013]糖果公园(树上带修莫队)

    link 题目大意:给一个树,树上每个点都有一种颜色,每个颜色都有一个收益 每次修改一个点上的颜色 或询问一条链上所有颜色第i次遇到颜色j可以获得w[i]*v[j]的价值,求链上价值和 题解:树上带修 ...

  9. 【BZOJ3052】【UOJ#58】【WC2013】糖果公园(树上莫队)

    [BZOJ3052][UOJ#58][WC2013]糖果公园(树上莫队) 题面 UOJ 洛谷 Candyland 有一座糖果公园,公园里不仅有美丽的风景.好玩的游乐项目,还有许多免费糖果的发放点,这引 ...

随机推荐

  1. [学习OpenCV攻略][004][播放AVI视频]

    cvCreateFileCapture(文件路径) 创建一个影音文件录像机,返回值为CvCapture类型,用于读取视频文件 cvQuerFrame(视频) 将下一帧视频文件载入内存,当CvCaptu ...

  2. Spider_Man_4 の BeautifulSoup

    一 介绍 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你 ...

  3. Actor-ES框架:Ray

    并发 1. 并发和并行 并发:两个或多个任务在同一时间段内运行.关注点在任务分割. 并行:两个或多个任务在同一时刻同时运行.关注点在同时执行. 本文大多数情况下不会严格区分这两个概念,默认并发就是指并 ...

  4. UE4 TSubclassOf VS Native Pointer

    最近看到了TSubclassOf ,所以想要弄清楚跟一般指针的区别~ NativePointer    VS     UClass*      VS     TSubclassOf AActor* p ...

  5. 【centos6.5 hadoop2.7 _64位一键安装脚本】有问题加我Q直接问

    #!/bin/bash#@author:feiyuanxing [既然笨到家,就要努力到家]#@date:2017-01-05#@E-Mail:feiyuanxing@gmail.com#@TARGE ...

  6. Git的简单的基本使用

    前言: 接触了Android Studio,自然是知道了Github这个网站,这个网站有许多大神们做的开源库,我们只需要简单地引入就是可以使用到这些开源库从而实现酷炫的效果,最近也是刚接触到Git的使 ...

  7. Struts 2 标签库及使用

    1  Struts 2 基本的标签属性. 1) name:指定表单元素的名称,该属性与Action中定义的属性相对应. 2) value:指定表单元素的值. 3) required:指定表单元素的必填 ...

  8. 用C#编写Linux守护进程

    如果要在Red Hat Enterprise Linux上将.NET Core进程作为后台进程运行,则可以创建自定义systemd单元.今天我将为.NET Core编写两个自定义系统单元的例子.一个是 ...

  9. es6重点笔记:对象

    1,Object.is():比较两个值是否严格相等,es5的'===',不能判断+0和-0,还有NaN,但是es6的Object.is()可以区分 Object.is(+0, -0); // fals ...

  10. 微信小程序左右滑动切换图片酷炫效果(附效果)

    开门见山,先上效果吧!感觉可以的用的上的再往下看. 心动吗?那就继续往下看! 先上页面结构吧,也就是wxml文件,其实可以理解成微信自己封装过的html,这个不多说了,不懂也没必要往下看了. < ...