Yaoge’s maximum profit

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 982    Accepted Submission(s): 274

Problem Description
Yaoge likes to eat chicken chops late at night. Yaoge has eaten too many chicken chops, so that Yaoge knows the pattern in the world of chicken chops. There are N cities in the world numbered from 1 to N . There are some roads between some cities, and there is one and only one simple path between each pair of cities, i.e. the cities are connected like a tree. When Yaoge moves along a path, Yaoge can choose one city to buy ONE chicken chop and sell it in a city after the city Yaoge buy it. So Yaoge can get profit if Yaoge sell the chicken chop with higher price. Yaoge is famous in the world. AFTER Yaoge has completed one travel, the price of the chicken chop in each city on that travel path will be increased by V .
 
Input
The first line contains an integer T (0 < T ≤ 10), the number of test cases you need to solve. For each test case, the first line contains an integer N (0 < N ≤ 50000), the number of cities. For each of the next N lines, the i-th line contains an integer Wi(0 < Wi ≤ 10000), the price of the chicken chop in city i. Each of the next N - 1 lines contains two integers X Y (1 ≤ X, Y ≤ N ), describing a road between city X and city Y . The next line contains an integer Q(0 ≤ Q ≤ 50000), the number of queries. Each of the next Q lines contains three integer X Y V(1 ≤ X, Y ≤ N ; 0 < V ≤ 10000), meaning that Yaoge moves along the path from city X to city Y , and the price of the chicken chop in each city on the path will be increased by V AFTER Yaoge has completed this travel.
 
Output
For each query, output the maximum profit Yaoge can get. If no positive profit can be earned, output 0 instead.
 
Sample Input
1
5
1
2
3
4
5
1 2
2 3
3 4
4 5
5
1 5 1
5 1 1
1 1 2
5 1 1
1 2 1
 
Sample Output
4
0
0
1
0
/*
hdu 5052 树链剖分(nice) problem:
给你一个树,每次找出u->v上面的最大差值(较小值必需在较大值前面).找出后在给路径所有点加上w solve:
首先是线段树维护差值的问题,在这里错了很久- -. 按照以前的写习惯了,并没想区间合并时候的问题...
树链剖分查找的时候,每次只能查找一条链,所以在这里也要合并(右边链Max - 左边链Min).
而且u->v的话,因为u到(u,v)的lca的节点号是逆序的(根节点较小),所以线段树要维护 左到右and右到左的差值 hhh-2016-08-22 10:53:40
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
using namespace std;
const int maxn = 200100;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int n;
ll a[maxn]; ll MAX(ll a,ll b)
{
return a>b?a:b;
}
ll MIN(ll a,ll b)
{
return a>b?b:a;
}
struct Edge
{
int to,next;
} edge[maxn<<2]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
// cout << u << " " <<pre <<" " <<d <<endl;
dep[u] = d;
fa[u] = pre,num[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Max,Min;
ll lans,rans;
ll add;
} tree[maxn << 2]; void push_up(int i)
{
tree[i].Max = MAX(tree[lson].Max,tree[rson].Max);
tree[i].Min = MIN(tree[lson].Min,tree[rson].Min);
tree[i].rans = MAX(tree[rson].Max - tree[lson].Min,MAX(tree[lson].rans,tree[rson].rans));
tree[i].lans = MAX(tree[lson].Max - tree[rson].Min,MAX(tree[lson].lans,tree[rson].lans));
if(tree[i].lans < 0) tree[i].lans = 0;
if(tree[i].rans < 0) tree[i].rans = 0;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mid=(l+r) >>1;
tree[i].add = 0;
tree[i].Max = 0,tree[i].Min = inf;
tree[i].lans = 0,tree[i].rans = 0;
if(l == r)
{
tree[i].Max = tree[i].Min = a[fp[l]];
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
}
void update(int i,ll d)
{
tree[i].Max += d,tree[i].Min += d;
tree[i].add += d;
} void push_down(int i)
{
if(tree[i].add)
{
update(lson,tree[i].add),update(rson,tree[i].add);
tree[i].add = 0;
}
} void update_area(int i,int l,int r,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
update(i,val);
return ;
}
push_down(i);
int mid = tree[i].mid;
if(l <= mid)
update_area(lson,l,r,val);
if(r > mid)
update_area(rson,l,r,val);
push_up(i);
} ll query(int i,int l,int r,int flag,ll& MaxPrice,ll& MinPrice)
{
if(tree[i].l >= l && tree[i].r <= r)
{
MinPrice = tree[i].Min;
MaxPrice = tree[i].Max;
if(flag)
{ return tree[i].rans;
}
else
{
return tree[i].lans;
}
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
return MAX(0LL,query(lson,l,r,flag,MaxPrice,MinPrice));
else if(l > mid)
return MAX(0LL,query(rson,l,r,flag,MaxPrice,MinPrice));
else
{
ll ta = 0;
ll max1,max2,min1,min2;
ll ans = MAX(query(lson,l,mid,flag,max1,min1),query(rson,mid+1,r,flag,max2,min2));
if(flag)
ta = max2 - min1;
else
ta = max1 - min2;
MaxPrice = MAX(max1,max2);
MinPrice = MIN(min1,min2);
ta = MAX(ta,0LL);
return MAX(ans,ta);
}
push_up(i);
} void make_add(int u,int v,ll val)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],val);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v])
swap(u,v);
update_area(1,p[u],p[v],val);
return ;
} ll make_query(int u,int v)
{
ll tmin,tmax,tMin,tMax;
ll cmin,cmax,cMin,cMax;
tMin = tmin = tree[1].Max;
tMax = tmax = 0;
ll cnt = 0;
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] > dep[f2])
{
// cout << p[f1] <<" "<<p[u] <<endl;
cnt = MAX(cnt,query(1,p[f1],p[u],0,cmax,cmin));
cnt = MAX(cnt,cmax - tmin);
cnt = MAX(cnt,tMax - cmin);
tmin = MIN(cmin,tmin);
tmax = MAX(cmax,tmax);
u = fa[f1],f1 = top[u];
// tmax = max(tmax,cmax);
}
else
{
// cout << p[f2] <<" "<<p[v] <<endl;
cnt = MAX(cnt,query(1,p[f2],p[v],1,cMax,cMin));
cnt = MAX(cnt,tMax - cMin);
cnt = MAX(cnt,cMax-tmin);
tMax = MAX(tMax,cMax);
tMin = MIN(tMin,cMin);
v = fa[f2],f2 = top[v];
// tMin = min(tMin,cMin);
}
}
if(dep[u] > dep[v])
{
cnt =MAX(cnt,query(1,p[v],p[u],0,cmax,cmin));
cnt =MAX(cnt,cmax-tmin);
tmin = MIN(tmin,cmin);
cnt = MAX(cnt,tMax-tmin);
}
else
{
cnt =MAX(cnt,query(1,p[u],p[v],1,cMax,cMin));
// cout <<"max" <<cMax <<" " <<"min" <<cMin <<endl;
cnt = MAX(cnt,tMax-cMin);
tMax = MAX(tMax,cMax);
cnt = MAX(cnt,tMax-tmin);
}
return cnt;
} /*
5
3 1 1 1
1 2 2 3
3
1 1 500000000
2 1 1
3 1 1
*/
int main()
{
// freopen("in.txt","r",stdin);
int T;
int m,u,v;
ll w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d",&n);
for(int i = 1; i <= n; i++)
scanf("%I64d",&a[i]);
for(int i =1; i <n; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
build(1,1,pos-1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%I64d",&u,&v,&w);
printf("%I64d\n",make_query(u,v));
make_add(u,v,w);
}
}
return 0;
}

  

hdu 5052 树链剖分的更多相关文章

  1. HDU 5052 /// 树链剖分+线段树区间合并

    题目大意: 给定n (表示树有n个结点) 接下来n行给定n个点的点权(在这个点上买鸡或者卖鸡的价钱就是点权) 接下来n-1行每行给定 x y 表示x结点和y结点之间有一条边 给定q (表示有q个询问) ...

  2. hdu 5893 (树链剖分+合并)

    List wants to travel Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/O ...

  3. hdu 4897 树链剖分(重轻链)

    Little Devil I Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  4. hdu 5274 树链剖分

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  5. HDU 3966 (树链剖分+线段树)

    Problem Aragorn's Story (HDU 3966) 题目大意 给定一颗树,有点权. 要求支持两种操作,将一条路径上的所有点权值增加或减少ai,询问某点的权值. 解题分析 树链剖分模板 ...

  6. hdu 3966(树链剖分+线段树区间更新)

    传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...

  7. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  8. hdu 4729 树链剖分

    思路:这个树链剖分其实还是比较明显的.将边按权值排序后插入线段树,然后用线段树查找区间中比某个数小的数和,以及这样的数的个数.当A<=B时,就全部建新的管子. 对于A>B的情况比较 建一条 ...

  9. hdu 3966 树链剖分

    思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...

随机推荐

  1. iOS开发-OC数据类型

    以下是OC中的实例,Swift部分不适用 iOS中的注释 // 单行注释 // 注释对代码起到解释说明的作用,注释是给程序员看的,不参与程序运行 /*  多行注释   Xcode快捷键   全选 cm ...

  2. 【iOS】Swift LAZY 修饰符和 LAZY 方法

    延时加载或者说延时初始化是很常用的优化方法,在构建和生成新的对象的时候,内存分配会在运行时耗费不少时间,如果有一些对象的属性和内容非常复杂的话,这个时间更是不可忽略.另外,有些情况下我们并不会立即用到 ...

  3. 日志 --BUG记录

    2014-12-15日 在做520wawa的免费推广   部署web应用时 错把path设置为"/*",导致启动tomcat时,导致错误 <Context path=&quo ...

  4. mui对话框事件

    mui.confirm('生成成功,是否跳转到订单页面?','',['跳转','取消'],function(e){ if(e.index==0){ //点击跳转 }else if(e.index==1 ...

  5. Python脚本自动提取和替换代码中的中文

    # -*- coding: utf-8 -*- import os import os.path import re import sys reload(sys) sys.setdefaultenco ...

  6. python+flask 分分钟完美解析阿里云日志

    拿到了自己阿里云服务器的日志,对其需要进行处理. class Read_Rizhi: def __init__(self,filename): self.filename=filename def o ...

  7. Collaborative Filtering(协同过滤)算法详解

    基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户 ...

  8. Gitlab的安装及项目新建

    1. Gitlab的安装及仓库创建 1.1下载gitlab安装包 1).官网下载速度较慢 建议先行下载 国内的源里面可以找到最新的版本https://mirrors.tuna.tsinghua.edu ...

  9. HTTP协议扫盲(五)HTTP请求防篡改

    相关链接: http://www.cnblogs.com/ziyi--caolu/p/4742577.html 请求防重放:http://www.2cto.com/kf/201612/573045.h ...

  10. GIT入门笔记(1)- Git的基本概念

    一.概念和定义 1.git是什么 许多人习惯用复制整个项目目录的方式来保存不同的项目版本,或许还会改名加上备份时间以示区别.这么做唯一的好处就是简单.不过坏处也不少:有时候会混淆所在的工作目录,一旦弄 ...