Yaoge’s maximum profit

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 982    Accepted Submission(s): 274

Problem Description
Yaoge likes to eat chicken chops late at night. Yaoge has eaten too many chicken chops, so that Yaoge knows the pattern in the world of chicken chops. There are N cities in the world numbered from 1 to N . There are some roads between some cities, and there is one and only one simple path between each pair of cities, i.e. the cities are connected like a tree. When Yaoge moves along a path, Yaoge can choose one city to buy ONE chicken chop and sell it in a city after the city Yaoge buy it. So Yaoge can get profit if Yaoge sell the chicken chop with higher price. Yaoge is famous in the world. AFTER Yaoge has completed one travel, the price of the chicken chop in each city on that travel path will be increased by V .
 
Input
The first line contains an integer T (0 < T ≤ 10), the number of test cases you need to solve. For each test case, the first line contains an integer N (0 < N ≤ 50000), the number of cities. For each of the next N lines, the i-th line contains an integer Wi(0 < Wi ≤ 10000), the price of the chicken chop in city i. Each of the next N - 1 lines contains two integers X Y (1 ≤ X, Y ≤ N ), describing a road between city X and city Y . The next line contains an integer Q(0 ≤ Q ≤ 50000), the number of queries. Each of the next Q lines contains three integer X Y V(1 ≤ X, Y ≤ N ; 0 < V ≤ 10000), meaning that Yaoge moves along the path from city X to city Y , and the price of the chicken chop in each city on the path will be increased by V AFTER Yaoge has completed this travel.
 
Output
For each query, output the maximum profit Yaoge can get. If no positive profit can be earned, output 0 instead.
 
Sample Input
1
5
1
2
3
4
5
1 2
2 3
3 4
4 5
5
1 5 1
5 1 1
1 1 2
5 1 1
1 2 1
 
Sample Output
4
0
0
1
0
/*
hdu 5052 树链剖分(nice) problem:
给你一个树,每次找出u->v上面的最大差值(较小值必需在较大值前面).找出后在给路径所有点加上w solve:
首先是线段树维护差值的问题,在这里错了很久- -. 按照以前的写习惯了,并没想区间合并时候的问题...
树链剖分查找的时候,每次只能查找一条链,所以在这里也要合并(右边链Max - 左边链Min).
而且u->v的话,因为u到(u,v)的lca的节点号是逆序的(根节点较小),所以线段树要维护 左到右and右到左的差值 hhh-2016-08-22 10:53:40
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
using namespace std;
const int maxn = 200100;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int n;
ll a[maxn]; ll MAX(ll a,ll b)
{
return a>b?a:b;
}
ll MIN(ll a,ll b)
{
return a>b?b:a;
}
struct Edge
{
int to,next;
} edge[maxn<<2]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
// cout << u << " " <<pre <<" " <<d <<endl;
dep[u] = d;
fa[u] = pre,num[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Max,Min;
ll lans,rans;
ll add;
} tree[maxn << 2]; void push_up(int i)
{
tree[i].Max = MAX(tree[lson].Max,tree[rson].Max);
tree[i].Min = MIN(tree[lson].Min,tree[rson].Min);
tree[i].rans = MAX(tree[rson].Max - tree[lson].Min,MAX(tree[lson].rans,tree[rson].rans));
tree[i].lans = MAX(tree[lson].Max - tree[rson].Min,MAX(tree[lson].lans,tree[rson].lans));
if(tree[i].lans < 0) tree[i].lans = 0;
if(tree[i].rans < 0) tree[i].rans = 0;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mid=(l+r) >>1;
tree[i].add = 0;
tree[i].Max = 0,tree[i].Min = inf;
tree[i].lans = 0,tree[i].rans = 0;
if(l == r)
{
tree[i].Max = tree[i].Min = a[fp[l]];
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
}
void update(int i,ll d)
{
tree[i].Max += d,tree[i].Min += d;
tree[i].add += d;
} void push_down(int i)
{
if(tree[i].add)
{
update(lson,tree[i].add),update(rson,tree[i].add);
tree[i].add = 0;
}
} void update_area(int i,int l,int r,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
update(i,val);
return ;
}
push_down(i);
int mid = tree[i].mid;
if(l <= mid)
update_area(lson,l,r,val);
if(r > mid)
update_area(rson,l,r,val);
push_up(i);
} ll query(int i,int l,int r,int flag,ll& MaxPrice,ll& MinPrice)
{
if(tree[i].l >= l && tree[i].r <= r)
{
MinPrice = tree[i].Min;
MaxPrice = tree[i].Max;
if(flag)
{ return tree[i].rans;
}
else
{
return tree[i].lans;
}
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
return MAX(0LL,query(lson,l,r,flag,MaxPrice,MinPrice));
else if(l > mid)
return MAX(0LL,query(rson,l,r,flag,MaxPrice,MinPrice));
else
{
ll ta = 0;
ll max1,max2,min1,min2;
ll ans = MAX(query(lson,l,mid,flag,max1,min1),query(rson,mid+1,r,flag,max2,min2));
if(flag)
ta = max2 - min1;
else
ta = max1 - min2;
MaxPrice = MAX(max1,max2);
MinPrice = MIN(min1,min2);
ta = MAX(ta,0LL);
return MAX(ans,ta);
}
push_up(i);
} void make_add(int u,int v,ll val)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],val);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v])
swap(u,v);
update_area(1,p[u],p[v],val);
return ;
} ll make_query(int u,int v)
{
ll tmin,tmax,tMin,tMax;
ll cmin,cmax,cMin,cMax;
tMin = tmin = tree[1].Max;
tMax = tmax = 0;
ll cnt = 0;
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] > dep[f2])
{
// cout << p[f1] <<" "<<p[u] <<endl;
cnt = MAX(cnt,query(1,p[f1],p[u],0,cmax,cmin));
cnt = MAX(cnt,cmax - tmin);
cnt = MAX(cnt,tMax - cmin);
tmin = MIN(cmin,tmin);
tmax = MAX(cmax,tmax);
u = fa[f1],f1 = top[u];
// tmax = max(tmax,cmax);
}
else
{
// cout << p[f2] <<" "<<p[v] <<endl;
cnt = MAX(cnt,query(1,p[f2],p[v],1,cMax,cMin));
cnt = MAX(cnt,tMax - cMin);
cnt = MAX(cnt,cMax-tmin);
tMax = MAX(tMax,cMax);
tMin = MIN(tMin,cMin);
v = fa[f2],f2 = top[v];
// tMin = min(tMin,cMin);
}
}
if(dep[u] > dep[v])
{
cnt =MAX(cnt,query(1,p[v],p[u],0,cmax,cmin));
cnt =MAX(cnt,cmax-tmin);
tmin = MIN(tmin,cmin);
cnt = MAX(cnt,tMax-tmin);
}
else
{
cnt =MAX(cnt,query(1,p[u],p[v],1,cMax,cMin));
// cout <<"max" <<cMax <<" " <<"min" <<cMin <<endl;
cnt = MAX(cnt,tMax-cMin);
tMax = MAX(tMax,cMax);
cnt = MAX(cnt,tMax-tmin);
}
return cnt;
} /*
5
3 1 1 1
1 2 2 3
3
1 1 500000000
2 1 1
3 1 1
*/
int main()
{
// freopen("in.txt","r",stdin);
int T;
int m,u,v;
ll w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d",&n);
for(int i = 1; i <= n; i++)
scanf("%I64d",&a[i]);
for(int i =1; i <n; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
build(1,1,pos-1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%I64d",&u,&v,&w);
printf("%I64d\n",make_query(u,v));
make_add(u,v,w);
}
}
return 0;
}

  

hdu 5052 树链剖分的更多相关文章

  1. HDU 5052 /// 树链剖分+线段树区间合并

    题目大意: 给定n (表示树有n个结点) 接下来n行给定n个点的点权(在这个点上买鸡或者卖鸡的价钱就是点权) 接下来n-1行每行给定 x y 表示x结点和y结点之间有一条边 给定q (表示有q个询问) ...

  2. hdu 5893 (树链剖分+合并)

    List wants to travel Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/O ...

  3. hdu 4897 树链剖分(重轻链)

    Little Devil I Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  4. hdu 5274 树链剖分

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  5. HDU 3966 (树链剖分+线段树)

    Problem Aragorn's Story (HDU 3966) 题目大意 给定一颗树,有点权. 要求支持两种操作,将一条路径上的所有点权值增加或减少ai,询问某点的权值. 解题分析 树链剖分模板 ...

  6. hdu 3966(树链剖分+线段树区间更新)

    传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...

  7. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  8. hdu 4729 树链剖分

    思路:这个树链剖分其实还是比较明显的.将边按权值排序后插入线段树,然后用线段树查找区间中比某个数小的数和,以及这样的数的个数.当A<=B时,就全部建新的管子. 对于A>B的情况比较 建一条 ...

  9. hdu 3966 树链剖分

    思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...

随机推荐

  1. aix 6.1系统怎么安装?这里有详细图文教程

    今年六月,我们公司出现了一次非常严重的数据丢失的事故.生产服务器崩溃导致所有的业务都陷于停滞,而且由于涉及到公司机密又无法贸然到数据恢复公司进行恢复,可是自己又无法解决.权衡利弊还是决定找一家有保密资 ...

  2. 14-TypeScript简单工厂模式

    在TypeScript中,要调用功能,通常在调用方通过实例化被调用方对象来调用相关方法,但这种实现在调用方和被调用方形成了强耦合的关系. 另外如果被调用方有种实现,在调用方需要根据场景去实例化不同的类 ...

  3. 10-TypeScript中的接口

    接口是一种规约的约定,从接口继承的类必须实现接口的约定.在高级开发中,通常接口是用于实现各种设计模式的基础,没有接口,设计模式无从谈起. 定义接口: interface ILog{ recordlog ...

  4. JAVA_SE基础——11.Java中的运算符

    在程序设计中,运算符应用得十分广泛,通过运算符可以将两个变量进行任意运算.数学中的"+"."-"."*"."/"运算符同 ...

  5. python django的ManyToMany简述

    Django的多对多关系 在Django的关系中,有一对一,一对多,多对多的关系 我们这里谈的是多对多的关系 ==我们首先来设计一个用于示例的表结构== # -*- coding: utf-8 -*- ...

  6. Mysql数据库主从配置

    一.为什么要使用数据库主从架构 一个网站损耗资源最厉害的就是数据库,最易崩溃的也是数据库,而数据库崩溃带来的后果是非常严重的.数据库分为读和写操作,在实际的应用中,读操作的损耗远比写操作多太多,因此读 ...

  7. ELK学习总结(4-2)关于导入数据

    用REST API的_bulk来批量插入,可以达到5到10w条每秒 把数据写进json文件,然后再通过批处理,执行文件插入数据: 1.先定义一定格式的json文件,文件不能过大,过大会报错 2.后用c ...

  8. CSS属性操作

    CSS属性操作 1 属性选择器 Elenment(元素) E[att] 匹配所有具有att属性的E元素,不考虑它的值.(注意:E在此处可以省略)(推荐使用) 例如:[po]{ font-size: 5 ...

  9. SpringBoot(一):使用eclipse/idea创建springboot helloword工程

    eclipse如何创建spring boot工程: 第一步:首先打开eclipse,找到图中的下图的中“下三角”符号,选中"working sets"(表示将会把eclipse中的 ...

  10. ROS系统MoveIt玩转双臂机器人系列(一)

    一.ROS系统的MoveIt模块简介 机器人操作系统ROS目前最受关注的两个模块是导航(Navigation)和机械臂控制(MoveIt!),其中,机械臂控制模块(后面简称MoveIt)可以让用户快速 ...