Yaoge’s maximum profit

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 982    Accepted Submission(s): 274

Problem Description
Yaoge likes to eat chicken chops late at night. Yaoge has eaten too many chicken chops, so that Yaoge knows the pattern in the world of chicken chops. There are N cities in the world numbered from 1 to N . There are some roads between some cities, and there is one and only one simple path between each pair of cities, i.e. the cities are connected like a tree. When Yaoge moves along a path, Yaoge can choose one city to buy ONE chicken chop and sell it in a city after the city Yaoge buy it. So Yaoge can get profit if Yaoge sell the chicken chop with higher price. Yaoge is famous in the world. AFTER Yaoge has completed one travel, the price of the chicken chop in each city on that travel path will be increased by V .
 
Input
The first line contains an integer T (0 < T ≤ 10), the number of test cases you need to solve. For each test case, the first line contains an integer N (0 < N ≤ 50000), the number of cities. For each of the next N lines, the i-th line contains an integer Wi(0 < Wi ≤ 10000), the price of the chicken chop in city i. Each of the next N - 1 lines contains two integers X Y (1 ≤ X, Y ≤ N ), describing a road between city X and city Y . The next line contains an integer Q(0 ≤ Q ≤ 50000), the number of queries. Each of the next Q lines contains three integer X Y V(1 ≤ X, Y ≤ N ; 0 < V ≤ 10000), meaning that Yaoge moves along the path from city X to city Y , and the price of the chicken chop in each city on the path will be increased by V AFTER Yaoge has completed this travel.
 
Output
For each query, output the maximum profit Yaoge can get. If no positive profit can be earned, output 0 instead.
 
Sample Input
1
5
1
2
3
4
5
1 2
2 3
3 4
4 5
5
1 5 1
5 1 1
1 1 2
5 1 1
1 2 1
 
Sample Output
4
0
0
1
0
/*
hdu 5052 树链剖分(nice) problem:
给你一个树,每次找出u->v上面的最大差值(较小值必需在较大值前面).找出后在给路径所有点加上w solve:
首先是线段树维护差值的问题,在这里错了很久- -. 按照以前的写习惯了,并没想区间合并时候的问题...
树链剖分查找的时候,每次只能查找一条链,所以在这里也要合并(右边链Max - 左边链Min).
而且u->v的话,因为u到(u,v)的lca的节点号是逆序的(根节点较小),所以线段树要维护 左到右and右到左的差值 hhh-2016-08-22 10:53:40
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
#define inf 0x3FFFFFFFFFFFFFFFLL
using namespace std;
const int maxn = 200100;
int head[maxn],tot,pos,son[maxn];
int top[maxn],fp[maxn],fa[maxn],dep[maxn],num[maxn],p[maxn];
int n;
ll a[maxn]; ll MAX(ll a,ll b)
{
return a>b?a:b;
}
ll MIN(ll a,ll b)
{
return a>b?b:a;
}
struct Edge
{
int to,next;
} edge[maxn<<2]; void ini()
{
tot = 0,pos = 1;
clr(head,-1),clr(son,-1);
} void add_edge(int u,int v)
{
edge[tot].to = v,edge[tot].next = head[u],head[u] = tot++;
} void dfs1(int u,int pre,int d)
{
// cout << u << " " <<pre <<" " <<d <<endl;
dep[u] = d;
fa[u] = pre,num[u] = 1;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u] == -1 || num[v] > num[son[u]])
son[u] = v;
}
}
} void getpos(int u,int sp)
{
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1)return ;
getpos(son[u],sp);
for(int i = head[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to;
if(v != son[u] && v != fa[u])
getpos(v,v);
}
} struct node
{
int l,r,mid;
ll Max,Min;
ll lans,rans;
ll add;
} tree[maxn << 2]; void push_up(int i)
{
tree[i].Max = MAX(tree[lson].Max,tree[rson].Max);
tree[i].Min = MIN(tree[lson].Min,tree[rson].Min);
tree[i].rans = MAX(tree[rson].Max - tree[lson].Min,MAX(tree[lson].rans,tree[rson].rans));
tree[i].lans = MAX(tree[lson].Max - tree[rson].Min,MAX(tree[lson].lans,tree[rson].lans));
if(tree[i].lans < 0) tree[i].lans = 0;
if(tree[i].rans < 0) tree[i].rans = 0;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].mid=(l+r) >>1;
tree[i].add = 0;
tree[i].Max = 0,tree[i].Min = inf;
tree[i].lans = 0,tree[i].rans = 0;
if(l == r)
{
tree[i].Max = tree[i].Min = a[fp[l]];
return;
}
build(lson,l,tree[i].mid);
build(rson,tree[i].mid+1,r);
push_up(i);
}
void update(int i,ll d)
{
tree[i].Max += d,tree[i].Min += d;
tree[i].add += d;
} void push_down(int i)
{
if(tree[i].add)
{
update(lson,tree[i].add),update(rson,tree[i].add);
tree[i].add = 0;
}
} void update_area(int i,int l,int r,ll val)
{
if(tree[i].l >= l && tree[i].r <= r)
{
update(i,val);
return ;
}
push_down(i);
int mid = tree[i].mid;
if(l <= mid)
update_area(lson,l,r,val);
if(r > mid)
update_area(rson,l,r,val);
push_up(i);
} ll query(int i,int l,int r,int flag,ll& MaxPrice,ll& MinPrice)
{
if(tree[i].l >= l && tree[i].r <= r)
{
MinPrice = tree[i].Min;
MaxPrice = tree[i].Max;
if(flag)
{ return tree[i].rans;
}
else
{
return tree[i].lans;
}
}
push_down(i);
int mid = tree[i].mid;
if(r <= mid)
return MAX(0LL,query(lson,l,r,flag,MaxPrice,MinPrice));
else if(l > mid)
return MAX(0LL,query(rson,l,r,flag,MaxPrice,MinPrice));
else
{
ll ta = 0;
ll max1,max2,min1,min2;
ll ans = MAX(query(lson,l,mid,flag,max1,min1),query(rson,mid+1,r,flag,max2,min2));
if(flag)
ta = max2 - min1;
else
ta = max1 - min2;
MaxPrice = MAX(max1,max2);
MinPrice = MIN(min1,min2);
ta = MAX(ta,0LL);
return MAX(ans,ta);
}
push_up(i);
} void make_add(int u,int v,ll val)
{
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] < dep[f2])
{
swap(f1,f2),swap(u,v);
}
update_area(1,p[f1],p[u],val);
u = fa[f1],f1 = top[u];
}
if(dep[u] > dep[v])
swap(u,v);
update_area(1,p[u],p[v],val);
return ;
} ll make_query(int u,int v)
{
ll tmin,tmax,tMin,tMax;
ll cmin,cmax,cMin,cMax;
tMin = tmin = tree[1].Max;
tMax = tmax = 0;
ll cnt = 0;
int f1 = top[u],f2 = top[v];
while(f1 != f2)
{
if(dep[f1] > dep[f2])
{
// cout << p[f1] <<" "<<p[u] <<endl;
cnt = MAX(cnt,query(1,p[f1],p[u],0,cmax,cmin));
cnt = MAX(cnt,cmax - tmin);
cnt = MAX(cnt,tMax - cmin);
tmin = MIN(cmin,tmin);
tmax = MAX(cmax,tmax);
u = fa[f1],f1 = top[u];
// tmax = max(tmax,cmax);
}
else
{
// cout << p[f2] <<" "<<p[v] <<endl;
cnt = MAX(cnt,query(1,p[f2],p[v],1,cMax,cMin));
cnt = MAX(cnt,tMax - cMin);
cnt = MAX(cnt,cMax-tmin);
tMax = MAX(tMax,cMax);
tMin = MIN(tMin,cMin);
v = fa[f2],f2 = top[v];
// tMin = min(tMin,cMin);
}
}
if(dep[u] > dep[v])
{
cnt =MAX(cnt,query(1,p[v],p[u],0,cmax,cmin));
cnt =MAX(cnt,cmax-tmin);
tmin = MIN(tmin,cmin);
cnt = MAX(cnt,tMax-tmin);
}
else
{
cnt =MAX(cnt,query(1,p[u],p[v],1,cMax,cMin));
// cout <<"max" <<cMax <<" " <<"min" <<cMin <<endl;
cnt = MAX(cnt,tMax-cMin);
tMax = MAX(tMax,cMax);
cnt = MAX(cnt,tMax-tmin);
}
return cnt;
} /*
5
3 1 1 1
1 2 2 3
3
1 1 500000000
2 1 1
3 1 1
*/
int main()
{
// freopen("in.txt","r",stdin);
int T;
int m,u,v;
ll w;
scanf("%d",&T);
while(T--)
{
ini();
scanf("%d",&n);
for(int i = 1; i <= n; i++)
scanf("%I64d",&a[i]);
for(int i =1; i <n; i++)
{
scanf("%d%d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,0);
getpos(1,1);
build(1,1,pos-1);
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d%d%I64d",&u,&v,&w);
printf("%I64d\n",make_query(u,v));
make_add(u,v,w);
}
}
return 0;
}

  

hdu 5052 树链剖分的更多相关文章

  1. HDU 5052 /// 树链剖分+线段树区间合并

    题目大意: 给定n (表示树有n个结点) 接下来n行给定n个点的点权(在这个点上买鸡或者卖鸡的价钱就是点权) 接下来n-1行每行给定 x y 表示x结点和y结点之间有一条边 给定q (表示有q个询问) ...

  2. hdu 5893 (树链剖分+合并)

    List wants to travel Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/O ...

  3. hdu 4897 树链剖分(重轻链)

    Little Devil I Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others ...

  4. hdu 5274 树链剖分

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  5. HDU 3966 (树链剖分+线段树)

    Problem Aragorn's Story (HDU 3966) 题目大意 给定一颗树,有点权. 要求支持两种操作,将一条路径上的所有点权值增加或减少ai,询问某点的权值. 解题分析 树链剖分模板 ...

  6. hdu 3966(树链剖分+线段树区间更新)

    传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...

  7. HDU 3966 /// 树链剖分+树状数组

    题意: http://acm.hdu.edu.cn/showproblem.php?pid=3966 给一棵树,并给定各个点权的值,然后有3种操作: I x y z : 把x到y的路径上的所有点权值加 ...

  8. hdu 4729 树链剖分

    思路:这个树链剖分其实还是比较明显的.将边按权值排序后插入线段树,然后用线段树查找区间中比某个数小的数和,以及这样的数的个数.当A<=B时,就全部建新的管子. 对于A>B的情况比较 建一条 ...

  9. hdu 3966 树链剖分

    思路:树链剖分入门题,我这门入得好苦啊,程序很快写出来了,可是在LCA过程中把update函数里的左右边界位置写反了,一直RE到死. #pragma comment(linker, "/ST ...

随机推荐

  1. 异步协程 的 trip库

    import trip headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, ...

  2. python的Flask 介绍

    Flask 介绍 知识点 微框架.WSGI.模板引擎概念 使用 Flask 做 web 应用 模板的使用 根据 URL 返回特定网页 实验步骤 1. 什么是 Flask? Flask 是一个 web ...

  3. org.hibernate.hibernate.connection.release_mode

    org.hibernate.connection包的主要封装了通过JDBC来连接数据库的操作,用户可以以数据源的方式,或者通过特定数据库驱动的方式,甚至是自己定义连接类的方式来完成数据库的连接操作,包 ...

  4. Unity使用脚本进行批量动态加载贴图

    先描述一下我正在做的这个项目,是跑酷类音游. 那么跑酷类音游在绘制跑道上的时候,就要考虑不同的砖块显示问题.假设我有了一个节奏列表,那么我们怎么将不同的贴图贴到不同的砖块上去呢? 我花了好几个小时才搞 ...

  5. Web Api 使用模型验证

    public class Person { public int Id { get; set; } [Required(ErrorMessage = "姓名不能为空啊啊啊!")] ...

  6. HTTP与私有二进制协议之间的区别

    简单的文本协议.二进制协议 写网络程序躲不过协议,协议其实就是定义了消息的格式,以及消息是如何交换的.协议可简单可复杂,复杂精密如TCP协议,简单奔放如HTTP的协议.这里将我所接触到的协议稍微总结一 ...

  7. java专业术语

    java的(PO,VO,TO,BO,DAO,POJO)解释 PO(persistant object) 持久对象 在o/r映射的时候出现的概念,如果没有o/r映射,没有这个概念存在了.通常对应数据模型 ...

  8. python 开发之路 -MySQL

    阅读目录 第一篇 : 数据库 之 基本概念 第二篇 : MySQL 之 库操作 第三篇 : MySQL 之 表操作 第四篇 : MySQL 之 数据操作 第五篇 : MySQL 之 视图.触发器.存储 ...

  9. mybatis的generator中xml配置问题

    <!-- 生成模型的包名和位置 --> <javaModelGenerator targetPackage="com.sung.risk.model.biz" t ...

  10. 在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)

    在删除一个指针之后,一定将该指针设置成空指针(即在delete *p之后一定要加上: p=NULL)