Alice's Classified Message

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 312    Accepted Submission(s): 122

Problem Description
Alice wants to send a classified message to Bob. She tries to encrypt the message with her original encryption method. The message is a string S, which consists of N lowercase letters.

S[a…b] means a substring of S ranging from S[a] to S[b] (0≤a≤b<N). If the first i letters have been encrypted, Alice will try to find a magic string P. Assuming P has K letters, P is the longest string which satisfies P=S[T...T+K−1] (0≤T<i,T+K≤N) and P=S[i…i+K−1](i+K≤N). In other words, P is a substring of S, of which starting address is within [0...i−1], and P is also a prefix of S[i...N−1]. If P exists, Alice will append integer K and T to ciphertext. If T is not unique, Alice would select the minimal one. And then i is incremented by K. If P does not exist, Alice will append -1 and the ASCII code of letter S[i] to ciphertext, and then increment i by 1.

Obviously the first letter cannot be encrypted. That is to say, P does not exist when i=0. So the first integer of ciphertext must be -1, and the second integer is the ASCII code of S[0].

When i=N, all letters are encrypted, and Alice gets the final ciphertext, which consists of many pairs of integers. Please help Alice to implement this method.

 
Input
The first line of input contains an integer T, which represents the number of test cases (T≤50). Each test case contains a line of string, which has no more than 100000 lowercase letters. It is guaranteed that the total length of the strings is not greater than 2×106.
 
Output
For each test case, output a single line consisting of “Case #X:” first. X is the test case number starting from 1. Output the ciphertext in the following lines. Each line contains two integers separated by a single space.
 
Sample Input
2
aaaaaa
aaaaabbbbbaaabbc
 
Sample Output
Case #1:
-1 97
5 0
Case #2:
-1 97
4 0
-1 98
4 5
5 2
-1 99
 /*
hdu5558 后缀数组 从[1,n]对于每个i,求suff[j](j < i)与suff[i]的最长公共前缀,
如果有多个,取最小的那个 我们可以通过后缀数组先求出,如果i-1和i,i和i+1都有公共前缀,
那么i-1和i+1也有公共前缀,所以可以先处理出每个i的左右界限。然后对于i左右扫描一下即可 然后枚举i,从pre[i]-nex[i]找到合适的结果即可 hhh-2016-03-10 18:17:04
*/
#include <algorithm>
#include <cmath>
#include <queue>
#include <iostream>
#include <cstring>
#include <map>
#include <cstdio>
#include <vector>
#include <functional>
#define lson (i<<1)
#define rson ((i<<1)|1)
using namespace std;
typedef long long ll;
const int maxn = ; int t1[maxn],t2[maxn],c[maxn];
bool cmp(int *r,int a,int b,int l)
{
return r[a]==r[b] &&r[l+a] == r[l+b];
} void get_sa(int str[],int sa[],int Rank[],int height[],int n,int m)
{
n++;
int p,*x=t1,*y=t2;
for(int i = ; i < m; i++) c[i] = ;
for(int i = ; i < n; i++) c[x[i] = str[i]]++;
for(int i = ; i < m; i++) c[i] += c[i-];
for(int i = n-; i>=; i--) sa[--c[x[i]]] = i;
for(int j = ; j <= n; j <<= )
{
p = ;
for(int i = n-j; i < n; i++) y[p++] = i;
for(int i = ; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
for(int i = ; i < m; i++) c[i] = ;
for(int i = ; i < n; i++) c[x[y[i]]]++ ;
for(int i = ; i < m; i++) c[i] += c[i-];
for(int i = n-; i >= ; i--) sa[--c[x[y[i]]]] = y[i]; swap(x,y);
p = ;
x[sa[]] = ;
for(int i = ; i < n; i++)
x[sa[i]] = cmp(y,sa[i-],sa[i],j)? p-:p++;
if(p >= n) break;
m = p;
}
int k = ;
n--;
for(int i = ; i <= n; i++)
Rank[sa[i]] = i;
for(int i = ; i < n; i++)
{
if(k) k--;
int j = sa[Rank[i]-];
while(str[i+k] == str[j+k]) k++;
height[Rank[i]] = k;
}
} int pre[maxn],nex[maxn];
int Rank[maxn],height[maxn];
int sa[maxn],str[maxn];
char a[maxn];
int len; int main()
{
int T,cas = ;
scanf("%d",&T);
while(T--)
{
scanf("%s",a);
int len = ;
for(int i =;a[i] != '\0'; i++)
{
str[len++] = a[i]-'a'+;
}
str[len] = ;
get_sa(str,sa,Rank,height,len,); for(int i = ; i <= len; i++)
{
if(height[i] == )
pre[i] = i;
else
pre[i] = pre[i-];
} for(int i = len; i >= ; i--)
{
if(height[i+] == || i == len) nex[i] = i;
else nex[i] = nex[i+];
} int i = ;
printf("Case #%d:\n",cas++);
while(i < len)
{
int now = Rank[i]; //i的排名
int k = ,t = i;
int mi = height[now];
for(int j = now-; j >= pre[now]; j--)
{
mi = min(mi,height[j+]);
if(mi < k)
break;
if(sa[j] < i)
{
if(mi > k || (mi==k && sa[j] < t))
{
k = mi;
t = sa[j];
}
}
}
if(now+ <= nex[now]) mi = height[now+];
for(int j = now+; j <= nex[now]; j++)
{
mi = min(mi,height[j]);
if(mi < k)
break;
if(sa[j] < i)
{
if(mi > k || (mi==k && sa[j] < t))
{
t = sa[j];
k = mi;
}
}
} if(k == ) printf("-1 %d\n",a[i]);
else printf("%d %d\n",k,t);
if(k) i+=k;
else i++;
}
}
return ;
}
												

hdu5558 后缀数组的更多相关文章

  1. HDU5558 Alice's Classified Message(合肥区域赛 后缀数组)

    当初合肥区域赛的题(现场赛改了数据范围就暴力过了),可惜当初后缀数组算法的名字都没听过,现在重做下. i从1到n - 1,每次枚举rank[i]附近的排名,并记录当起点小于i时的LCP(rank[i] ...

  2. 后缀数组的倍增算法(Prefix Doubling)

    后缀数组的倍增算法(Prefix Doubling) 文本内容除特殊注明外,均在知识共享署名-非商业性使用-相同方式共享 3.0协议下提供,附加条款亦可能应用. 最近在自学习BWT算法(Burrows ...

  3. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  4. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  5. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  6. POJ1743 Musical Theme [后缀数组]

    Musical Theme Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 27539   Accepted: 9290 De ...

  7. 后缀数组(suffix array)详解

    写在前面 在字符串处理当中,后缀树和后缀数组都是非常有力的工具. 其中后缀树大家了解得比较多,关于后缀数组则很少见于国内的资料. 其实后缀数组是后缀树的一个非常精巧的替代品,它比后缀树容易编程实现, ...

  8. 【UOJ #35】后缀排序 后缀数组模板

    http://uoj.ac/problem/35 以前做后缀数组的题直接粘模板...现在重新写一下模板 注意用来基数排序的数组一定要开到N. #include<cstdio> #inclu ...

  9. 【BZOJ-2119】股市的预测 后缀数组

    2119: 股市的预测 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 334  Solved: 154[Submit][Status][Discuss ...

随机推荐

  1. Vim 游戏 2048

    给大家介绍一款可以在Vim里面玩的游戏 vim2048. 界面如图: 操作非常简单,可以用 hjkl 或者 上下左右方向键移动 项目开源地址为: https://github.com/wsdjeg/v ...

  2. github提交代码到服务器的方法

    第一种情况,没有冲突:1.git add .//进入到center的项目下将本地文件打包的意思2.git pull origin dev//将服务器的代码下载到本地如果是最新的会提示Already u ...

  3. Python内置函数(41)——id

    英文文档: id(object) Return the "identity" of an object. This is an integer which is guarantee ...

  4. 你考虑清楚了吗就决定用 Bootstrap ?

    近年来,在前端项目中, Bootstrap 已经成为了一个非常受欢迎的工具. Bootstrap 的确有很多优点,然而,如果你的团队中恰好有一个专职的前端工程师.那我推荐你们不要使用 Bootstra ...

  5. hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装

    hadoop2.7.3+spark2.1.0+scala2.12.1环境搭建(4)SPARK 安装 一.依赖文件安装 1.1 JDK 参见博文:http://www.cnblogs.com/liugh ...

  6. Spark入门(1-3)Spark的重要概念

    1.什么是弹性分布式数据集? Spark提出了RDD(Resilient Distributed Datasets)这么一个全新的概念,RDD弹性分布式数据集是并行.容错的分布式数据结构:可以将RDD ...

  7. Spring Security入门(3-2)Spring Security对接用户的权限系统

    源文链接,多谢作者的分享: http://www.360doc.com/content/14/0727/16/18637323_397445724.shtml 1.原生的spring-security ...

  8. LinkedHashMap就这么简单【源码剖析】

    前言 声明,本文用得是jdk1.8 前面已经讲了Collection的总览和剖析List集合以及散列表.Map集合.红黑树还有HashMap基础了: Collection总览 List集合就这么简单[ ...

  9. 道可道,非常道——详解promise

    promise 出来已久,以前一直使用,没有仔细剖析原理,最近在复习es6的知识,写一下自己对于promise的理解. promise是es6的一种异步编程解决方案,避免频繁的回调函数,增强代码的可阅 ...

  10. 基于OpenCV单目相机的快速标定--源码、工程、实现过程

    相机的标定是所有人走进视觉世界需要做的第一件事,辣么多的视觉标定原理解释你可以随便在网上找到,这里只讲到底如何去实现,也算是给刚入门的朋友做个简单的分享. 1.单目相机标定的工程源码 首先请到同性交友 ...