2823: [AHOI2012]信号塔

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1190  Solved: 545
[Submit][Status][Discuss]

Description

在野外训练中,为了确保每位参加集训的成员安全,实时的掌握和收集周边环境和队员信息非常重要,集训队采用
的方式是在训练所在地散布N个小型传感器来收集并传递信息,这些传感器只与设在集训地中的信号塔进行通信,
信号塔接收信号的覆盖范围是圆形,可以接收到所有分布在该集训区域内所有N个小型传感器(包括在该圆形的边
上)发出的信号。信号塔的功率与信号塔接收范围半径的大小成正比,因为是野外训练,只能使用事先储备好的蓄
电设备,因此在可以收集所有传感器信息的基础上,还应使得信号塔的功率最小。小龙帮助教官确定了一种信号塔
设置的方案,既可以收集到所有N个传感器的信号,又可以保证这个信号塔的功率是最小的。同学们,你们知道,
这个信号塔的信号收集半径有多大,它应该设置在何处吗?

Input

共N+1行,第一行为正整数N(1≤N≤1000000),表示队员个数。接下来N行,每行两个实数用空格分开,分别是第
i个队员的坐标X

Output

一行,共三个实数(中间用空格隔开),分别是信号塔的坐标,和信号塔 覆盖的半径。 (注:队员是否在边界上
的判断应符合他到圆心的距离与信号塔接收半径之差的绝对值小于10^-6

Sample Input

5
1.200 1.200
2.400 2.400
3.800 4.500
2.500 3.100
3.900 1.300

Sample Output

2.50 2.85 2.10

HINT

1≤N≤500000

最小圆覆盖裸题

 #include<bits/stdc++.h>
#define N 500010
using namespace std;
int n;double r;
const double eps=1e-;
struct P{
double x,y;
P operator - (const P &b)const{return (P){x-b.x,y-b.y};}
double len(){return sqrt(x*x+y*y);}
}a[N],c; P getcentre(P A,P B,P C){
P ret;
double a1=B.x-A.x,b1=B.y-A.y,c1=(a1*a1+b1*b1)/;
double a2=C.x-A.x,b2=C.y-A.y,c2=(a2*a2+b2*b2)/;
double d=a1*b2-a2*b1;
ret.x=A.x+(c1*b2-c2*b1)/d;
ret.y=A.y+(a1*c2-a2*c1)/d;
return ret;
} void getcircle(){
random_shuffle(a+,a++n);
c=a[];r=;
for(int i=;i<=n;i++){
if((a[i]-c).len()>r+eps){
c=a[i];r=;
for(int j=;j<i;j++){
if((a[j]-c).len()>r+eps){
c.x=(a[i].x+a[j].x)/;
c.y=(a[i].y+a[j].y)/;
r=(a[j]-c).len();
for(int k=;k<j;k++){
if((a[k]-c).len()>r+eps){
c=getcentre(a[i],a[j],a[k]);
r=(a[i]-c).len();
}
}
}
}
}
}
} int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
getcircle();
printf("%.2lf %.2lf %.2lf\n",c.x,c.y,r);
return ;
}

bzoj2823[AHOI2012]信号塔的更多相关文章

  1. BZOJ2823 [AHOI2012]信号塔 【最小圆覆盖】

    题目链接 BZOJ2823 题解 最小圆覆盖模板 都懒得再写一次 #include<iostream> #include<cstdio> #include<cmath&g ...

  2. bzoj2823: [AHOI2012]信号塔&&1336: [Balkan2002]Alien最小圆覆盖&&1337: 最小圆覆盖

    首先我写了个凸包就溜了 这是最小圆覆盖问题,今晚学了一下 先随机化点,一个个加入 假设当前圆心为o,半径为r,加入的点为i 若i不在圆里面,令圆心为i,半径为0 再重新从1~i-1不停找j不在圆里面, ...

  3. [日常摸鱼]bzoj2823 [AHOI2012]信号塔

    题意:$n$个点,求最小圆覆盖,$n \leq 5e5$ 这题数据是随机的hhh 我们可以先求出凸包然后对凸包上的点求最小圆覆盖-(不过直接求应该也行?) 反正随便写好像都能过- #include&l ...

  4. 【BZOJ2823】[AHOI2012]信号塔(最小圆覆盖)

    [BZOJ2823][AHOI2012]信号塔(最小圆覆盖) 题面 BZOJ 洛谷 相同的题: BZOJ1 BZOJ2 洛谷 题解 模板题... #include<iostream> #i ...

  5. 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...

  6. 【bzoj2823】 AHOI2012—信号塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2823 (题目链接) 题意 求最小圆覆盖 Solution 关于最小圆覆盖的做法,论文里面都有.其实真 ...

  7. (bzoj1337 || 洛谷P1742 最小圆覆盖 )|| (bzoj2823 || 洛谷P2533 [AHOI2012]信号塔)

    bzoj1337 洛谷P1742 用随机增量法.讲解:https://blog.csdn.net/jokerwyt/article/details/79221345 设点集A的最小覆盖圆为g(A) 可 ...

  8. 【BZOJ】2823: [AHOI2012]信号塔

    题意 给\(n\)个点,求一个能覆盖所有点的面积最小的圆.(\(n \le 50000\)) 分析 随机增量法 题解 理论上\(O(n^3)\)暴力,实际上加上随机化后期望是\(O(n)\)的. 算法 ...

  9. BZOJ 2823: [AHOI2012]信号塔

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2823 随机增量法.不断加点维护圆,主要是三点共圆那里打得烦(其实也就是个两中垂线求交点+联立方 ...

随机推荐

  1. selenium 爬虫

    from selenium import webdriver import time driver = webdriver.PhantomJS(executable_path="D:/pha ...

  2. bzoj千题计划276:bzoj4515: [Sdoi2016]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=4515 把lca带进式子,得到新的式子 然后就是 维护树上一次函数取min 一个调了一下午的错误: 当 ...

  3. vue内置指令详解——小白速会

    指令 (Directives) 是带有 v- 前缀的特殊属性,职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于 DOM. 内置指令 1.v-bind:响应并更新DOM特性:例如:v-bi ...

  4. XFTP连接主机文件名显示中文乱码且不能下载的解决方法

    Xftp连接主机文件名显示中文乱码且不能下载的本地解决方法 原因:Xftp编码格式问题 解决方法:把Xftp的编码格式增加UTF-8 具体步骤:打开Xftp,文件-属性,在打开的属性界面中打开&quo ...

  5. 服务器数据恢复方法_存储raid硬盘离线数据恢复案例

    [故障描述]某法院的一台HP-P4500的存储系统,底层是12块1TB的硬盘组的RAID.其中每6个1TB的盘一组,第一组的前面一部分组了一个RAID0+1,是存放HP-P4500嵌入式系统,接着组了 ...

  6. 原生JavaScript实现页面回到顶部的功能

    /*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...

  7. python中 functools模块 闭包的两个好朋友partial偏函数和wraps包裹

    前一段时间学习了python当中的装饰器,主要利用了闭包的原理.后来呢,又见到了python当中的functools模块,里面有很多实用的功能.今天我想分享一下跟装饰器息息相关的两个函数partial ...

  8. Orm之中介模型

    什么是中介模型 中介模型针对的是ManyToMany(多对多)的时候第三张表的问题, 中介模型其实指的就是我们不通过Django创建第三张表,如果自己不创建第三张表,而是由django给我们创建,那就 ...

  9. 已操作文件的方式,新建一个用户alex

  10. zoj 3950 how many nines

    https://vjudge.net/problem/ZOJ-3950 题意: 给出两个日期,计算从第一个日期开始到第二个日期,每一天的日期中的9加起来一共有多少个. 思路: 看题解补的题.首先看这题 ...