B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij
题意:城市被东西向和南北向的主干道划分为n×n个区域。城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路,已知每天每条道路两个方向的人流量,即沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海拔高度值,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则不需要耗费体力。已知城市西北角的交叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最小值。结果四舍五入到整数。
分析:因为城市的每个点之间都是连续的,所以不考虑0到1中的小数。
直接将地图分成海拔为0,1的两部分并不会使答案更差。此题就转化为求最小割。
然而边数有近百万,直接用dinic会炸掉。考虑转化成对偶图。
把从西向东的边看成从上到下,源点连最上最右两行。其他边同理。
连好边跑最短路,看边的数量选择堆优化Dij
代码
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define S (n*n+1)
#define T (n*n+2)
#define p(x,y) (n*(x-1)+y)
using namespace std;
priority_queue <pair <int,int> >q;
int head[300020],to[1500010],nxt[1500010],val[1500010],cnt,n;
int dis[300020],vis[300020];
inline void add(int u,int v,int w)
{
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
val[cnt]=w;
}
inline void read(int &x)
{
int f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=(x<<3)+(x<<1)+s-'0';s=getchar();}
x*=f;
}
int main()
{
read(n);
int x;
register int i,j;
for(i=0;i<=n;++i)
{
for(j=1;j<=n;++j)
{
read(x);
if(i==0)add(S,p(1,j),x);
else if(i==n)add(p(n,j),T,x);
else add(p(i,j),p(i+1,j),x);
}
}
for(i=1;i<=n;++i)
{
for(j=0;j<=n;++j)
{
read(x);
if(j==0)add(p(i,1),T,x);
else if(j==n)add(S,p(i,n),x);
else add(p(i,j+1),p(i,j),x);
}
}
for(i=0;i<=n;++i)
{
for(j=1;j<=n;++j)
{
read(x);
if(i==0)add(p(1,j),S,x);
else if(i==n)add(T,p(n,j),x);
else add(p(i+1,j),p(i,j),x);
}
}
for(i=1;i<=n;++i)
{
for(j=0;j<=n;++j)
{
read(x);
if(j==0)add(T,p(i,1),x);
else if(j==n)add(p(i,n),S,x);
else add(p(i,j),p(i,j+1),x);
}
}
for(i=0;i<=T;++i)
dis[i]=100000000;
dis[S]=0;
q.push(make_pair(-dis[S],S));
while(q.size())
{
int x=q.top().second;
q.pop();
if(vis[x])continue;
vis[x]=1;
for(i=head[x];i;i=nxt[i])
{
if(dis[to[i]]>dis[x]+val[i])
{
dis[to[i]]=dis[x]+val[i];
q.push(make_pair(-dis[to[i]],to[i]));
}
}
}
printf("%d\n",dis[T]);
}
/***************************************************************
Problem: 1897
User: 20170105
Language: C++
Result: Accepted
Time:584 ms
Memory:22164 kb
****************************************************************/
B20J_2007_[Noi2010]海拔_平面图最小割转对偶图+堆优化Dij的更多相关文章
- [BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】
题目链接:BZOJ - 2007 题目分析 首先,左上角的高度是 0 ,右下角的高度是 1.那么所有点的高度一定要在 0 与 1 之间.然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 ...
- BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】
题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...
- BZOJ 2007 海拔(平面图最小割转对偶图最短路)
首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...
- bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)
bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...
- BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路
问题描述 BZOJ1001 LG4001 题解 平面图最小割=对偶图最短路 假设起点和终点间有和其他边都不相交的一条虚边. 如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个 ...
- BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路
问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...
- 【NOI2010】海拔【平面图最小割】
[问题描写叙述] YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见.能够将YT市看作 一个正方形,每个区域也可看作一个正方形.从而.YT城市中包含(n+1)×(n+ ...
- BZOJ 2007 海拔(平面图最小割-最短路)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2007 题意:给出一个n*n的格子,那么顶点显然有(n+1)*(n+1)个.每两个相邻顶点 ...
- bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)
平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...
随机推荐
- 前端技术之_CSS详解第四天
前端技术之_CSS详解第四天 一.第三天的小总结 盒模型box model,什么是盒子? 所有的标签都是盒子.无论是div.span.a都是盒子.图片.表单元素一律看做文本. 盒模型有哪些组成: wi ...
- Python_PyMySQL数据库操作
连接数据库: conn=pymysql.connect(host=,user=',charset='utf8') 建立游标: cur = conn.cursor() 创建一个名字叫 lj 的数据库: ...
- Python_linux环境变量和软链接(个人理解)
--------------------------------------- 最近在服务器上想运行个脚本,装了个python3.6,但是他还自带了个2.7版本,后来发现上面还有3.5版本的pytho ...
- 7. Selenium的基本使用
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px "PingFang SC" } span.s1 { font: 32.0p ...
- Viavdo&ISE&Quartus II级联Modelsim级联仿真
博主一直致力寻找高效的工作方式,所以一直喜欢折腾软件,从刚开始只用软件IDE自带的编辑器,到Notepad++,再到后来的Vim,从用ISE14.7自带的Isim仿真,到发现更好的Modelsim,再 ...
- vue中get和post请求
import axios from 'axios'; import router from '@/router'; import { setSessionStorage, getSes ...
- AngularJS之备忘与诀窍
译自:<angularjs> 备忘与诀窍 目前为止,之前的章节已经覆盖了Angular所有功能结构中的大多数,包括指令,服务,控制器,资源以及其它内容.但是我们知道有时候仅仅阅读是不够的. ...
- java8完全解读二
继续着上次的java完全解读一 继续着上次的java完全解读一1.强大的Stream API1.1什么是Stream1.2 Stream操作的三大步骤1.2.1 创建Stream1.2.2 Strea ...
- Flux和ExtJS MVC框架的异同点介绍
Flux是Facebook在现有MVC框架数据流动复杂,难以设计和维护大型的前端应用的情况下设计的一种新的数据架构协议.叫做协议是因为Flux本身就像MVC一样,规定了一种机制,但是Facebook提 ...
- java(一、概念和开发工具)
Java 简介 Java是由Sun Microsystems公司于1995年5月推出的Java面向对象程序设计语言和Java平台的总称.由James Gosling和同事们共同研发,并在1995年正式 ...