【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description
Input
Output
输出仅有 1 行,包含 1 个整数,表示最少的代价。
Sample Input
Sample Output
HINT
1 < = L < = R < = 10^15, 2 < = K < = 20
题解:
据说是数位DP水题,EXM?
一开始想了个5维DP……想了想不太对,怂了题解……
先强制性让集合点为最低位,然后得到一个答案,但显然这个不是最优解,那么考虑当某个数集合点从低位转移到高一位的要求,即此位以前数字之和要大于后面数之和,若用$a_{i}(P)$表示P进制下第i位的数字,这个条件就是:$\sum_{x=i+1}^n a_{x}(P)>=\sum_{x=1}^{i-1}a_{x}(P)$。在考虑如何DP。
首先对于强制性选择最低位,可以直接数位DP,这部分很裸;接着,考虑从次低位到最高位为集合点的减少量,记忆化搜索的时候我们传一个选取位置,当当前位数大于等于此值时我们加上此位枚举值,反之减去,若减去到某位后和小于了0,那么说明这个状态不满足进位集合,直接返回0即可。最后我们用第一次DP出的答案减去之后枚举新集合点的减少量即为答案。
(话说第一次打记忆化搜索,感觉怪怪的。)
代码(抄来的233):
#define Troy 10/11/2017
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[][**],P;
int num,p[];
inline ll dfs(int pos,int sum,bool limit){
if(pos==) return sum;
if(!limit&&f[pos][sum]!=-) return f[pos][sum];
int end=limit?p[pos]:P-;
ll ret=;
for(int i=;i<=end;i++)
ret+=dfs(pos-,sum+(pos-)*i,limit&&i==end);
if(!limit) f[pos][sum]=ret;
return ret;
}
inline ll dfs(int pos,int up,int sum,bool limit){
if(sum<) return ;
if(pos==) return sum;
if(!limit&&f[pos][sum]!=-) return f[pos][sum];
int end=limit?p[pos]:P-;
ll ret=;
for(int i=;i<=end;i++)
if(pos>=up) ret+=dfs(pos-,up,sum+i,limit&&i==end);
else ret+=dfs(pos-,up,sum-i,limit&&i==end);
return limit==?f[pos][sum]=ret:ret;
}
inline ll calc(ll n){
num=;
do{
p[++num]=n%P;
n/=P;
}while(n);
memset(f,-,sizeof(f));
ll ret=dfs(num,,true);
for(int i=;i<=num;i++)
memset(f,-,sizeof(f)),ret-=dfs(num,i,,true);
return ret;
}
int main(){
ll a,b;
scanf("%lld%lld%lld",&a,&b,&P);
printf("%lld\n",calc(b)-calc(a-));
}
【bzoj3598】: [Scoi2014]方伯伯的商场之旅的更多相关文章
- [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 449 Solved: 254[Submit][Sta ...
- BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)
看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...
- bzoj3598 [Scoi2014]方伯伯的商场之旅
数位dp,我们肯定枚举集合的位置,但是如果每次都重新dp的话会很麻烦,所以我们可以先钦定在最低位集合,dp出代价,然后再一步步找到正确的集合点,每次更改的代价也dp算就好了. #include < ...
- 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)
传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- [SCOI2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【数位DP】SCOI2014 方伯伯的商场之旅
题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...
- 【bzoj3598】 Scoi2014—方伯伯的商场之旅
http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...
- BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)
题目链接 先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)? 假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标&l ...
随机推荐
- HTML中<base>标签的正确使用
HTML <base> 标签 1. 定义:<base> 标签是 HTML 语言中的基准网址标记,是一个单标签. 2. 作用:规定页面上所有链接的默认 URL 和默认目标. ...
- 深入浅出Java concurrent
看 :http://www.blogjava.net/xylz/archive/2010/07/08/325587.html
- org.eclipse.swt.SWTException: Invalid thread access问题解决方法
转自 http://blog.csdn.net/ecjtuxuan/article/details/2125023 怎么解决SWT多线程错误:Caused by: org.eclipse.swt.SW ...
- jquery文本框内容实时监控
$("#A").bind("input propertychange", function () { $("#B").val($(this) ...
- Redis的Java使用入门
因项目需要,最近简单学习了redis的使用 redis在服务器centos环境下安装比较简单. 如果要在windows上安装,可以参考别人的文章 http://blog.csdn.net/renfuf ...
- 单调队列——求m区间内的最小值
单调队列,顾名思义是指队列内的元素是有序的,队头为当前的最大值(单调递减队列)或最小值(单调递增序列),以单调递减队列为例来看队列的入队和出队操作: 1.入队: 如果当前元素要进队,把当前元素和队尾元 ...
- Java 面试知识点解析(一)——基础知识篇
前言: 在遨游了一番 Java Web 的世界之后,发现了自己的一些缺失,所以就着一篇深度好文:知名互联网公司校招 Java 开发岗面试知识点解析 ,来好好的对 Java 知识点进行复习和学习一番,大 ...
- C/C++静态代码安全检查工具
静态代码安全检查工具是一种能够帮助程序员自动检测出源程序中是否存在安全缺陷的软件.它通过逐行分析程序的源代码,发现软件中潜在的安全漏洞.本文针对 C/C++语言程序设计中容易存在的多种安全问题,分别分 ...
- Flask入门之Virtualvenv的安装及使用(windows)
Virtualvenv 提供一个特定的Python虚拟环境(沙盒),以便于那些要求特定版本的模块的脚本能够顺利运行. 因为在Virtualvenv中,我们可以使用 pip install -r req ...
- C语言pow()函数的计算精度问题
编程计算 a+aa+aaa+-+aa-a(n个a)的值,n和a的值由键盘输入.例如,当n=4,a=2,表示计算2+22+222+2222的值. 程序运行结果示例: Input a,n: 2,4↙ su ...