Description

方伯伯有一天去参加一个商场举办的游戏。商场派了一些工作人员排成一行。每个人面前有几堆石子。说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的第 j 位。
现在方伯伯要玩一个游戏,商场会给方伯伯两个整数 L,R。方伯伯要把位置在 [L, R] 中的每个人的石子都合并成一堆石子。每次操作,他可以选择一个人面前的两堆石子,将其中的一堆中的某些石子移动到另一堆,代价是移动的石子数量 * 移动的距离。商场承诺,方伯伯只要完成任务,就给他一些椰子,代价越小,给他的椰子越多。所以方伯伯很着急,想请你告诉他最少的代价是多少。
例如:10 进制下的位置在 12312 的人,合并石子的最少代价为:
1 * 2 + 2 * 1 + 3 * 0 + 1 * 1 + 2 * 2 = 9
即把所有的石子都合并在第三堆

Input

输入仅有 1 行,包含 3 个用空格分隔的整数 L,R,K,表示商场给方伯伯的 2 个整数,以及进制数

Output

输出仅有 1 行,包含 1 个整数,表示最少的代价。

Sample Input

3 8 3

Sample Output

5

HINT

1 < =  L < =  R < =  10^15, 2 < =  K < =  20

题解:

  据说是数位DP水题,EXM?

  一开始想了个5维DP……想了想不太对,怂了题解……

  先强制性让集合点为最低位,然后得到一个答案,但显然这个不是最优解,那么考虑当某个数集合点从低位转移到高一位的要求,即此位以前数字之和要大于后面数之和,若用$a_{i}(P)$表示P进制下第i位的数字,这个条件就是:$\sum_{x=i+1}^n a_{x}(P)>=\sum_{x=1}^{i-1}a_{x}(P)$。在考虑如何DP。

  首先对于强制性选择最低位,可以直接数位DP,这部分很裸;接着,考虑从次低位到最高位为集合点的减少量,记忆化搜索的时候我们传一个选取位置,当当前位数大于等于此值时我们加上此位枚举值,反之减去,若减去到某位后和小于了0,那么说明这个状态不满足进位集合,直接返回0即可。最后我们用第一次DP出的答案减去之后枚举新集合点的减少量即为答案。

  (话说第一次打记忆化搜索,感觉怪怪的。)

代码(抄来的233):

   

 #define Troy 10/11/2017

 #include <bits/stdc++.h>

 using namespace std;

 typedef long long ll;

 ll f[][**],P;

 int num,p[];

 inline ll dfs(int pos,int sum,bool limit){
if(pos==) return sum;
if(!limit&&f[pos][sum]!=-) return f[pos][sum];
int end=limit?p[pos]:P-;
ll ret=;
for(int i=;i<=end;i++)
ret+=dfs(pos-,sum+(pos-)*i,limit&&i==end);
if(!limit) f[pos][sum]=ret;
return ret;
} inline ll dfs(int pos,int up,int sum,bool limit){
if(sum<) return ;
if(pos==) return sum;
if(!limit&&f[pos][sum]!=-) return f[pos][sum];
int end=limit?p[pos]:P-;
ll ret=;
for(int i=;i<=end;i++)
if(pos>=up) ret+=dfs(pos-,up,sum+i,limit&&i==end);
else ret+=dfs(pos-,up,sum-i,limit&&i==end);
return limit==?f[pos][sum]=ret:ret;
} inline ll calc(ll n){
num=;
do{
p[++num]=n%P;
n/=P;
}while(n);
memset(f,-,sizeof(f));
ll ret=dfs(num,,true);
for(int i=;i<=num;i++)
memset(f,-,sizeof(f)),ret-=dfs(num,i,,true);
return ret;
} int main(){
ll a,b;
scanf("%lld%lld%lld",&a,&b,&P);
printf("%lld\n",calc(b)-calc(a-));
}

【bzoj3598】: [Scoi2014]方伯伯的商场之旅的更多相关文章

  1. [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)

    3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 449  Solved: 254[Submit][Sta ...

  2. BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)

    看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...

  3. bzoj3598 [Scoi2014]方伯伯的商场之旅

    数位dp,我们肯定枚举集合的位置,但是如果每次都重新dp的话会很麻烦,所以我们可以先钦定在最低位集合,dp出代价,然后再一步步找到正确的集合点,每次更改的代价也dp算就好了. #include < ...

  4. 2019.03.28 bzoj3598: [Scoi2014]方伯伯的商场之旅(带权中位数+数位dp)

    传送门 题意咕咕咕自己读吧挺简单的 思路: 由带权中位数的性质可以得到对于每个数放在每个二进制位的代价一定是个单调或者单峰函数,因此我们先把所有的数都挪到第一个位置,然后依次向右枚举峰点(极值点)把能 ...

  5. 洛谷P3286 [SCOI2014]方伯伯的商场之旅

    题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...

  6. [SCOI2014]方伯伯的商场之旅

    Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...

  7. 【数位DP】SCOI2014 方伯伯的商场之旅

    题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...

  8. 【bzoj3598】 Scoi2014—方伯伯的商场之旅

    http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...

  9. BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)

    题目链接 先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)? 假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标&l ...

随机推荐

  1. 浏览器调试js

    在Google Chrome浏览器出来之前,我一直使用FireFox,因为FireFox的插件非常丰富,更因为FireFox有强大的Firebug,对于前端开发可谓神器. 在Chrome出来的时候,我 ...

  2. Oracle面试过程中常见的二十个问题

    1.冷备份和热备份的不同点以及各自的优点  解答:热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份.而冷备份指在数据库关闭后,进行备份,适用于所有模式的数据库.热备份的优点在于当备份时, ...

  3. Centos 7 卸载自带的openjdk

    [root@localhost ~]# rpm -qa|grep jdk java-1.6.0-openjdk-1.6.0.0-1.50.1.11.5.el6_3.x86_64 java-1.7.0- ...

  4. 【抽象那些事】不完整的抽象&多方面抽象&未用的抽象&重复的抽象

    不完整的抽象 抽象未支持所有互补或相关的方法时,将导致这种坏味. 为什么要有完整的抽象? 一种重要的抽象实现手法是创建内聚而完整的抽象.抽象未支持相关的方法时,可能会影响抽象的内聚性和完整性.如果抽象 ...

  5. SignUtil

    最近接的新项目 加密比较多  我就记录下. SignUtil是jnewsdk-mer-1.0.0.jar  com.jnewsdk.util中的一个工具类.由于我没有百度到对应的信息.所以我只能看源码 ...

  6. ASP.NET Core Api网关Ocelot的中文文档

    架构图 入门 不支持 配置 路由 请求聚合 GraphQL 服务发现 微服务ServiceFabric 认证 授权 Websockets 管理 流量控制 缓存 QoS服务质量 转换Headers 转换 ...

  7. 关于Python的super用法研究

    一.问题的发现与提出 在Python类的方法(method)中,要调用父类的某个方法,在python 2.2以前,通常的写法如代码段1: 代码段1: class A:  def __init__(se ...

  8. Taurus.MVC 支持Asp.Net Core 的过程

    前言: 这些天,似乎.NET Core相关的新闻和文章经常在我眼前晃~~~ 昨天,微软又发布了.Core 2.1,又愰了一下,差点没亮瞎我的眼睛. 好吧,大概是上天给我的暗示,毕竟 CYQ.Data  ...

  9. 什么是C语言。C语言入门

    C语言是一种通用计算机编程语言,应用广泛. C语言的设计目标是提供一种编程语言,它可以编译,处理低级内存,生成少量机器代码,并以简单的方式运行,而无需任何操作环境的支持.虽然C语言提供了许多低级处理功 ...

  10. cocos2d-x学习之路之工作吐槽

    经过大半年的cocos2d-x的学习,目前已在一个游戏创业公司实习,负责客户端的代码编写和维护.公司做了一款网游.比较给力,马上就要发布了.希望能够大卖.比较坑的是,居然电脑不给联网.查资料都不好查, ...