题面

板板讲的霍尔定理

霍尔定理:一张二分图有完全匹配的充要条件是对于任$i$个左部点都有至少$i$个右部点与它们相邻。放在这个题里就是说显然最容易使得鞋不够的情况是一段连续的人,那就维护一下最大子段和就好了=。=

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
long long ll[*N],rr[*N],len[*N],val[*N];
long long n,m,k,d,t1,t2;
void pushup(int nde)
{
int ls=*nde,rs=*nde+;
ll[nde]=max(val[ls]+ll[rs],ll[ls]);
rr[nde]=max(val[rs]+rr[ls],rr[rs]);
len[nde]=max(max(len[ls],len[rs]),rr[ls]+ll[rs]);
val[nde]=val[ls]+val[rs];
}
void create(int nde,int l,int r)
{
if(l==r)
ll[nde]=rr[nde]=len[nde]=val[nde]=-k;
else
{
int mid=(l+r)/,ls=*nde,rs=*nde+;
create(ls,l,mid),create(rs,mid+,r);
pushup(nde);
}
}
void change(int nde,int l,int r,int pos,int task)
{
if(l==r)
{
ll[nde]+=task,rr[nde]+=task;
len[nde]+=task,val[nde]+=task;
}
else
{
int mid=(l+r)/,ls=*nde,rs=*nde+;
if(pos<=mid) change(ls,l,mid,pos,task);
else change(rs,mid+,r,pos,task);
pushup(nde);
}
}
int main ()
{
scanf("%lld%lld%lld%lld",&n,&m,&k,&d),create(,,n);
for(int i=;i<=m;i++)
{
scanf("%lld%lld",&t1,&t2),change(,,n,t1,t2);
(len[]<=k*d)?printf("TAK\n"):printf("NIE\n");
}
return ;
}

解题:POI 2009 Lyz的更多相关文章

  1. [POI 2009]Lyz

    Description 题库链接 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的溜冰鞋.有 \(m\ ...

  2. 解题:POI 2009 Fire Extinguishers

    题面 洛谷数据非常水,建议去bzoj 我第一眼一看这不是那个POI2011的升级版吗(明明这个是2009年的,应该说那个是这个的弱化版,果然思想差不多. 因为$k$很小,可以考虑每个间隔距离来转移.我 ...

  3. 解题:POI 2009 Ticket Inspector

    题面 看起来很水,然而不会DP的蒟蒻并不会做,PoPoqqq orz 设$f[i][j]$表示当前在第$i$个点和第$i+1$个点之间查票,已经查了$j$次的最大收益.然后就是那种很常见的枚举前一个结 ...

  4. 解题:POI 2009 TAB

    题面 这也算是个套路题(算吗)?发现换来换去每行每列数的组成是不变的,那么就把每行每列拎出来哈希一下,复杂度$O(Tn^2log$ $n)$有点卡时=.=. 然而正解似乎不需要哈希,就像这样↓ ;i& ...

  5. 【BZOJ 1115】【POI 2009】石子游戏Kam

    http://www.lydsy.com/JudgeOnline/problem.php?id=1115 差分后变成阶梯博弈. #include<cstdio> #include<c ...

  6. 【Nim 游戏】 学习笔记

    前言 没脑子选手随便一道博弈论都不会 -- 正文 Nim 游戏引入 这里给出最简单的 \(Nim\) 游戏的题目描述: \(Nim\) 游戏 有两个顶尖聪明的人在玩游戏,游戏规则是这样的: 有\(n\ ...

  7. 解题:POI 2016 Nim z utrudnieniem

    题面 出现了,神仙题! 了解一点博弈论的话可以很容易转化题面:问$B$有多少种取(diu)石子的方式使得取后剩余石子异或值为零且取出的石子堆数是$d$的倍数 首先有个暴力做法:$dp[i][j][k] ...

  8. 解题:NOI 2009 诗人小G

    题面 今天考试考了,于是开始糊学决策单调性DP 这是一个完全不会优化DP的人 决策单调性DP的一种优化方法是用单调队列优化 存下{左端点l,右端点r,最优决策点p}的三元组,按照单调队列的通常操作来说 ...

  9. 解题:NOI 2009 管道取珠

    题面 考虑这个平方的实际意义,实际是说取两次取出一样的序列 那么设$dp[i][j][k][h]$表示第一次在上面取$i$个下面取$j$个,第二次在上面取$k$个下面取$h$个的方案数 等等$n^4$ ...

随机推荐

  1. 初探C#

    初探.NET底层原理 学习C#离不开.net平台,因为微软的开发平台真的是太强大了,它为每一个开发者都做了太多太多,但是我们不仅要知道怎么用,而且也应该知道其中的内部到底包含了什么.本篇文章不仅讲一些 ...

  2. [转]git学习------>git-rev-parse命令初识

    git学习------>git-rev-parse命令初识 2017年06月13日 10:04:13 阅读数:2172 一.准备工作 第一步:在d盘git test目录下,新建工作区根目录dem ...

  3. 人脸检测及识别python实现系列(3)——为模型训练准备人脸数据

    人脸检测及识别python实现系列(3)——为模型训练准备人脸数据 机器学习最本质的地方就是基于海量数据统计的学习,说白了,机器学习其实就是在模拟人类儿童的学习行为.举一个简单的例子,成年人并没有主动 ...

  4. CsvHelper文档-4映射

    CsvHelper文档-4映射 类映射 有时候你的类成员和csv的header不一定对应,有时候你的csv文件根本就没有header行,你需要特别制定一个成员的index,你不能依靠.net中默认的顺 ...

  5. 排查GCC 4.4.X版本优化switch-enum的BUG

    起因 一次偶然碰到一个诡异的bug,现象是同一份C++代码使用GCC4.4.x版本在开启优化前和优化后的结果不一样,优化后的代码逻辑不正确. 示例代码如下: //main.cpp #include & ...

  6. Beta发布——视频博客

    1.视频链接 视频上传至优酷自频道,地址链接:http://v.youku.com/v_show/id_XMzkzNzAxNDk2OA==.html?spm=a2hzp.8244740.0.0 2.视 ...

  7. Alpha阶段第2周/共2周 Scrum立会报告+燃尽图 02

    此次作业要求参见 [https://edu.cnblogs.com/campus/nenu/2018fall/homework/2285] Scrum master:祁玉 一.小组介绍 组长:王一可 ...

  8. c++团队作业工作笔记

    这周时间还比较充裕,所以就有较多的时间来投入团队作业之中. emmmm,由于组长那边感觉完全没动,于是我完成了选英雄的UI界面,到时候给button加上信号就没什么问题. 虽然界面比较简单,但是还是花 ...

  9. MDL详解

    以下的虚拟内存可以理解成逻辑内存,因为我觉得只有这样才能讲通下面所有的东西.以下的“未分页”指没有为页进行编码. 以下为MDL结构体(我很郁闷,我在MSDN上没有找到这个结构体) typedef st ...

  10. 模拟jq的设置样式

    //需求,创建一个div,添加到页面上,给div添加属性 //面向对象开发,构造函数创建类 function divTag(){ this.div1=document.createElement('d ...