树形动规入门题

先放题面

题目描述

某大学有N个职员,编号为1~N。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri,但是呢,如果某个职员的上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。

输入输出格式

输入格式:

第一行一个整数N。(1<=N<=6000)

接下来N行,第i+1行表示i号职员的快乐指数Ri。(-128<=Ri<=127)

接下来N-1行,每行输入一对整数L,K。表示K是L的直接上司。

最后一行输入0 0

输出格式:

输出最大的快乐指数。

输入输出样例

输入样例#1:

7

1

1

1

1

1

1

1

1 3

2 3

6 4

7 4

4 5

3 5

0 0

输出样例#1:

5

这是一道非常简单的树形动规入门题,思路也很简单

摘取题意可知,一个人不愿意与自己的直接上司同时参加舞会,也就是相当于一个人不能与自己直接下属及直接上司同时参加舞会,继续化简就是每个点不会与和自己直接相连的点同时被选中说白了就是

最大独立集问题

那么我们直接看代码说话咯

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define gc() getchar()
#define ll long long
#define maxn 6005
using namespace std; inline ll read(){ //快读不多解释
ll a=0;char p=gc();int f=0;
while(!isdigit(p)){f|=(p=='-');p=gc();}
while(isdigit(p)){a=(a<<3)+(a<<1)+(p^48);p=gc();}
return f?-a:a;
} struct ahaha{ //邻接表存边
int to,next;
}e[maxn*2];
int n,head[maxn],sz,a[maxn];
ll f[maxn][2]; //f[i][0]表示第i个点未被选中的最大值,f[i][1]表示第i个点被选中的最大值
inline void add(int u,int v){ //添加边的操作
e[sz].to=v;e[sz].next=head[u];head[u]=sz++;
}
void dfs(int u,int fa){ //核心深搜
for(int i=head[u];~i;i=e[i].next){ //遍历这个点的所有儿子
int v=e[i].to;if(v==fa)continue; //防止循环回去
dfs(v,u);
f[u][0]+=max(f[v][1],f[v][0]);
f[u][1]+=f[v][0];
}
} int main(){memset(head,-1,sizeof head); //head数组置为-1方便判回操作
n=read();
for(int i=1;i<=n;++i){a[i]=read();f[i][1]=a[i];} //若一个点被选中,则至少加上它自己的“快乐指数”
for(int i=1;i<=n;++i){
int x=read(),y=read();
add(x,y);add(y,x);
}
dfs(1,0); //以1为根节点(这道题并没有交代根节点,所以以1为根节点)
printf("%lld",max(f[1][0],f[1][1]));
return 0;
}

洛谷 P1352 没有上司的舞会的更多相关文章

  1. 洛谷 p1352 没有上司的舞会 题解

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  2. 洛谷P1352 没有上司的舞会——树形DP

    第一次自己写树形DP的题,发个博客纪念`- 题目来源:P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结 ...

  3. 洛谷P1352 没有上司的舞会 [2017年5月计划 清北学堂51精英班Day3]

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子 结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职 ...

  4. 洛谷 P1352 没有上司的舞会【树形DP】(经典)

    <题目链接> <转载于>>> > 题目描述: 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  5. 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  6. 洛谷P1352 没有上司的舞会

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  7. 洛谷——P1352 没有上司的舞会

    https://www.luogu.org/problem/show?pid=1352#sub 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树, ...

  8. 洛谷P1352 没有上司的舞会题解

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  9. 洛谷 P1352 没有上司的舞会(树形 DP)

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

随机推荐

  1. [agc002D]Stamp Rally-[并查集+整体二分]

    Description 题目大意:给你一个n个点m个条边构成的简单无向连通图,有Q组询问,每次询问从两个点x,y走出两条路径,使这两条路径覆盖z个点,求得一种方案使得路径上经过的边的最大编号最小.n, ...

  2. tkinter事件高级用法实例

    from tkinter import * import threading, time trace = 0 class CanvasEventsDemo: def __init__(self, pa ...

  3. Windows网络通信(一):socket同步编程

    网络通信常用API 1. WSAStartup用于初始化WinSock环境 int WSAStartup( WORD wVersionRequested, LPWSADATA lpWSAData ); ...

  4. 180723-Quick-Task 动态脚本支持框架之结构设计篇

    文章链接:https://liuyueyi.github.io/hexblog/2018/07/23/180723-Quick-Task-动态脚本支持框架之结构设计篇/ Quick-Task 动态脚本 ...

  5. mybatis SQL映射配置文件

    目录 标签常见属性(备忘) 参数样例 resultType.resultMap.discriminator 自动映射 动态SQL语句 罗列Mapper中最常用部分 标签常见属性(备忘) <sel ...

  6. unittest,requests——接口测试脚本及报告

    用unittest管理两个利用requests模块,做百度搜索的简单接口测试用例,之后自动输出报告 # encoding=utf-8import requests,unittest,HTMLTestR ...

  7. java.lang.Boolean.valueOf(String s)

    简单说,就是s为true(这四个字母大小写任意)时,返回值为true,否则为false public class one { public static void main(String[] args ...

  8. Python数据挖掘——基础知识

    Python数据挖掘——基础知识 数据挖掘又称从数据中 挖掘知识.知识提取.数据/模式分析 即为:从数据中发现知识的过程 1.数据清理 (消除噪声,删除不一致数据) 2.数据集成 (多种数据源 组合在 ...

  9. sql注入waf绕过简单入门

    0x1  白盒 0x2 黑盒 一.架构层 1.寻找源站==> 2.利用同网段==> 3.利用边界漏洞==> ssrf只是一个例子 二.资源限制 Waf为了保证业务运行,会忽略对大的数 ...

  10. AndroidArchitecture

    title: AndroidArchitecture date: 2016-04-08 23:26:20 tags: [architecture] categories: [Mobile,Androi ...