题意:

给定一棵n个节点的树,从1到n标号。选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少。

现需要计算对于所有选择k个点的情况最小选择边数的总和为多少。

考虑每条边对答案的贡献,令x为这条边左边的点数,则n-x为这条边右边的点数。

满足条件的情况数=总情况数-不满足条件的情况数。即C(n,k)-(C(x,k)+C(n-x,k)).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=, siz[N];
LL fac[N], ans;
int n, k; void exgcd(LL a,LL b,LL & d,LL & x,LL & y){
if(!b) d = a, x = , y = ;
else exgcd(b, a%b, d, y, x), y -= x*(a/b);
}
LL inv(LL a, LL p){
LL d, x, y;
exgcd(a, p, d, x, y);
return d == ? (x+p)%p : -;
}
void init(){
fac[k]=;
FOR(i,k+,n) fac[i]=fac[i-]*i%MOD*inv(i-k,MOD)%MOD;
}
void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
int tmpx, tmpy;
siz[x]=;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); siz[x]+=siz[v];
tmpx=siz[v]; tmpy=n-siz[v];
ans=(ans+fac[n]-fac[tmpx]-fac[tmpy])%MOD;
}
}
int main ()
{
int u, v;
n=Scan(); k=Scan();
init();
FO(i,,n) u=Scan(), v=Scan(), add_edge(u,v), add_edge(v,u);
dfs(,);
printf("%lld\n",(ans+MOD)%MOD);
return ;
}

51nod 1677 treecnt(思维)的更多相关文章

  1. 51Nod 1677 treecnt

    一道比较基础的计数题,还是一个常用的单独计算贡献的例子. 首先看题目和范围,暴力枚举肯定是不可行的,而且\(O(n\ logn)\)的算法貌似很难写. 那我们就来想\(O(n)\)的吧,我们单独考虑每 ...

  2. 1677 treecnt(贡献)

    1677 treecnt 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联 ...

  3. 51nod 1625 贪心/思维

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1625 1625 夹克爷发红包 基准时间限制:1 秒 空间限制:13107 ...

  4. 51nod 1099 贪心/思维

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1099 1099 任务执行顺序 基准时间限制:1 秒 空间限制:13107 ...

  5. 51nod 1554 KMP思维题

    题目为中文,因而不再解释题意. 首先遵循如下设定可以有以下几个结论:1,首先谈论下KMP的一个特殊性质:对于某一个特立独行的字符串:例如ABCDEF,在建立有限状态自动机之后,都会有,所有元素的失配边 ...

  6. 51nod 1069【思维】

    具体思路来自相关讨论 给个不太严谨的证明思路: 第一步:证明路径可逆,也就是如果(a, b) -> (x, y)可行,则(x, y) - > (a, b)可行 这个比较直观,只需要分别由( ...

  7. 51nod 1677

    考虑树上的每条边对答案的贡献--- x ----y ---若 x 左边有 a2 个点,y 的右边有 a3 个点那么改边对答案的贡献为 C(n, k) - C(a2, k) - C(a3, k)快速幂求 ...

  8. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  9. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

随机推荐

  1. 20155323 2016-2017-2 《Java程序设计》第4周学习总结

    20155323 2016-2017-2 <Java程序设计>第4周学习总结 教材学习内容总结 继承的目的:继承是为了多态,能够采用父类引用指向子类对象,这样可以让代码更灵活.继承之后可以 ...

  2. 【转载】C/C++杂记:虚函数的实现的基本原理

    原文:C/C++杂记:虚函数的实现的基本原理 1. 概述 简单地说,每一个含有虚函数(无论是其本身的,还是继承而来的)的类都至少有一个与之对应的虚函数表,其中存放着该类所有的虚函数对应的函数指针.例: ...

  3. day 14 元组

    1. 使用场景? # 列表list 数据类型相同, #rwx文件 100个人的名字, # 用字典 dict ['dɪkt] 很多信息描述1个人, # tuple [ˈtʌpəl] #只读文件 不能修改 ...

  4. 【BZOJ2589】[SPOJ10707]Count on a tree II

    [BZOJ2589][SPOJ10707]Count on a tree II 题面 bzoj 题解 这题如果不强制在线就是一个很\(sb\)的莫队了,但是它强制在线啊\(qaq\) 所以我们就用到了 ...

  5. Linux 安装FastDFS<单机版>(使用Mac远程访问)

    阅读本文需要先阅读安装FastDFS<准备> 一 编译环境 yum install gcc-c++ yum -y install libevent yum install -y pcre ...

  6. CentOS 6.8 安装JDK8

    JDK安装 1.查看环境是否有默认jdk,输入命令: rpm -qa | grep jdk 如果有默认jdk,可以使用 yum remove 删除 2.进入系统根目录,创建developer文件夹 3 ...

  7. leetcode- 将有序数组转换为二叉搜索树(java)

    将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10,-3,0, ...

  8. C# ArcFace 免费人脸识别 2.0 demo

    **配置过程:** 1. 到[虹软官网](https://ai.arcsoft.com.cn/index.htm?utm_source=csdn&utm_medium=referral)下载S ...

  9. Tree - Gradient Boosting Machine with sklearn source code

    This is the second post in Boosting algorithm. In the previous post, we go through the earliest Boos ...

  10. 使用经验风险最小化ERM方法来估计模型误差 开坑

    虽然已经学习了许多机器学习的方法,可只有我们必须知道何时何处使用哪种方法,才能将他们正确运用起来. 那不妨使用经验最小化ERM方法来估计 . 首先: 其中, δ代表训练出错的概率 k代表假设类的个数 ...