【bzoj4542】[Hnoi2016]大数 莫队算法
题目描述
给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数。其中P为质数。
输入
第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 213。
N,M<=100000,P为素数
输出
输出M行,每行一个整数,第 i行是第 i个询问的答案。
样例输入
11
121121
3
1 6
1 5
1 4
样例输出
5
3
2
题解
莫队算法
设 $b[i]=S[i...n]\ \text{mod}\ p$ ,那么 $S[l,r]$ 为 $p$ 的倍数,当且仅当: $\frac{b[l]-b[r+1]}{10^{r-l}}\ \text{mod}\ p=0$ 。
当 $p=2$ 或 $p=5$ 时,直接通过数字串末位判断是不是 $p$ 的倍数。设 $v[i]=[i\ \text{mod}\ p=0]$ ,维护 $v[i]$ 和 $v[i]·i$ 的前缀和即可快速得出答案。
当 $p\neq 2$ 且 $p\neq 5$ 时,$p$ 与 $10$ 互质。此时条件简化为:$b[l]\equiv b[r+1]\ (\text{mod}\ p)$ 。
因此原问题转化为:求 $[l,r+1]$ 内 $b$ 值相等的数对的数目。
将 $b$ 离散化,使用莫队算法,用桶维护离散化后的某个 $b$ 的出现次数,指针移动时统计答案即可。
时间复杂度 $O(n\sqrt n)$
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
ll p;
char str[N];
namespace task1
{
ll s1[N] , s2[N];
void solve()
{
int n , m , i , l , r;
scanf("%s%d" , str + 1 , &m) , n = strlen(str + 1);
for(i = 1 ; i <= n ; i ++ )
{
s1[i] = s1[i - 1] , s2[i] = s2[i - 1];
if((str[i] - '0') % p == 0) s1[i] ++ , s2[i] += i;
}
while(m -- )
{
scanf("%d%d" , &l , &r);
printf("%lld\n" , s2[r] - s2[l - 1] - (l - 1) * (s1[r] - s1[l - 1]));
}
}
}
namespace task2
{
struct data
{
int l , r , bl , id;
bool operator<(const data &a)const {return bl == a.bl ? r < a.r : bl < a.bl;}
}q[N];
int a[N] , mp[N];
ll b[N] , v[N] , ans[N];
void solve()
{
int n , m , i , si , lp = 1 , rp = 0;
ll t = 1 , now = 0;
scanf("%s%d" , str + 1 , &m) , n = strlen(str + 1) , si = (int)sqrt(n);
for(i = n ; i ; i -- , t = t * 10 % p) v[i] = b[i] = (b[i + 1] + (str[i] - '0') * t) % p;
v[n + 1] = 0 , sort(v + 1 , v + n + 2);
for(i = 1 ; i <= n + 1 ; i ++ ) a[i] = lower_bound(v + 1 , v + n + 2 , b[i]) - v;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &q[i].l , &q[i].r) , q[i].r ++ , q[i].bl = (q[i].l - 1) / si , q[i].id = i;
sort(q + 1 , q + m + 1);
for(i = 1 ; i <= m ; i ++ )
{
while(lp > q[i].l) now += mp[a[--lp]] , mp[a[lp]] ++ ;
while(rp < q[i].r) now += mp[a[++rp]] , mp[a[rp]] ++ ;
while(lp < q[i].l) mp[a[lp]] -- , now -= mp[a[lp++]];
while(rp > q[i].r) mp[a[rp]] -- , now -= mp[a[rp--]];
ans[q[i].id] = now;
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
}
}
int main()
{
scanf("%lld" , &p);
if(p == 2 || p == 5) task1::solve();
else task2::solve();
return 0;
}
【bzoj4542】[Hnoi2016]大数 莫队算法的更多相关文章
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- bzoj4542 [Hnoi2016]大数 莫队+同余
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...
- 【BZOJ4542】[Hnoi2016]大数 莫队
[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)
正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...
- bzoj 4542: [Hnoi2016]大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
随机推荐
- kali更新源相关 -- 没有release文件、签名无效、404
kali更新源相关 -- 没有release文件.签名无效.404 这个随笔主要是处理Mac下使用VMare虚拟机安装Kali时候我遇到的一些关于更新源的问题 (因为本人为了这个问题折腾了四五个小时, ...
- # 20155327 2016-20017-3 《Java程序设计》第3周学习总结
教材学习内容总结 第四章 认识对象 区分基本类型与类类型 基本类型: 1.整数:包括int,short,byte,long ,初始值为0 2.浮点型:float,double ,初始值为0.0 3.字 ...
- 201555334 实验一:Java开发环境的熟悉 总结
201555334 实验一:Java开发环境的熟悉 一.实验目的: 使用JDK编译.运行简单的Java程序: 使用Idea软件 编辑.编译.运行.调试Java程序. 二.实验内容: 编程实现让用户输入 ...
- php 换行 PHP_EOL
在unix世界换行就用/n来代替,但是windows为了体现他的不同,就用/r/n,更有意思的是在mac中用/r.因此unix系列用 /n,windows系列用 /r/n,mac用 /r,这样就用你写 ...
- day2 Opencv + image
[参考网站]http://backyardlife.duapp.com/duan/ 1.目标: 读入一幅图像,怎样显示一幅图像,以及如何保存一幅图像 cv2.imread(),cv2.imshow() ...
- 【POI2007】ZAP-Queries
题面 题解 $$ \sum_{i=1}^a\sum_{j=1}^b[gcd(i,\;j)=d] \\ =\sum_{i=1}^{\left\lfloor\frac ad\right\rfloor}\s ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
- Yii2 使用 bootboxJS美化confirm窗口
有些关键操作比如删除,我们在执行前一般先弹出来个confirm确认窗口. 在Yii2中为一个操作添加confirm确认很容易.只需在链接出添加一个‘data-confirm' => '确实要添加 ...
- luogu 2051 [AHOI2009]中国象棋
luogu 2051 [AHOI2009]中国象棋 真是一道令人愉♂悦丧心并框的好题... 首先"没有一个炮可以攻击到另一个炮"有个充分条件就是没有三个炮在同一行或同一列.证明:显 ...
- 如何写一个简单的HTTP服务器(重做版)
最近几天用C++重新写了之前的HTTP服务器,对以前的代码进行改进.新的HTTP服务器采用Reactor模式,有多个线程并且每个线程有一个EventLoop,主程序将任务分发到每个线程,其中采用的是轮 ...