数论——算数基本定理 - HDU 4497 GCD and LCM
GCD and LCM
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3379 Accepted Submission(s): 1482
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
6 72
7 33
0
gcd(x,y,z) == G, lcm(x,y,z) == L
x' = x /G,y' = y /G ,z' = z / G; gcd( x', y',z') == 1,lcm(x',y',z') == L/G
这样的话对t = L/G 这个数进行素因子分解,t = p1^t1 * p2^t2 * p3^t3 ..... * pn ^tn;
满足上面条件的x,y,z一定为这样的形式。
x' = p1^i1 * p2^i2 *```* pn^in.
y' = p1^j1 * p2^j2 * ```*pn^jn.
z' = p1^k1 * p2^k2 * ```*pn^kn.
为了满足上面的条件,对于p1,一定有max(i1,j1,k1) = t1和min(i1,j1,k1) =0;
因为gcd(p1^i1,p1^j1,p1^k1)== 1 → min(i1,j1,k1) == 0;lcm(p1^i1,p1^j1,p1^k1) == p1^t1 => max(i1,j1,k1) == t1;
所以我们现在要做的是把L/G分解成n个素因数相乘,比如:28=2*2*7=2^2 * 7
对于每一个p来说,三个数的集合一定是{ 0, t, x | 0≤x≤t }
- x = 0 或 x = t:这种情况有
= 6 种 - 0 < x < t:这种情况x的取值可以为 0~t 的整数,一共有 t-1 个,而每一个数,都可以有
种排列方法,就是6*(t-1)
所以对每一个P来说,最后一共有 6*t 种取法 。
举个例子:252=2*2*7=2^2 * 3^3 * 7 一共有6*2+6*3+6=36种不同的(x,y,z)序列。
而如果L%G!=0,自然就没有解
#include <iostream>
using namespace std;
int f1(int n) {
, i = ;
) {
;
){
) {
t++;
n /= i;
}
res *= * t;
}
i++;
}
return res;
}
int main() {
int T;
cin >> T;
while (T--) {
int G, L;
cin >> G >> L;
)
cout << << endl;
else
cout << f1(L / G) << endl;
}
;
}
数论——算数基本定理 - HDU 4497 GCD and LCM的更多相关文章
- HDU 4497 GCD and LCM(数论+容斥原理)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 4497 GCD and LCM 数学
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...
- HDU 4497 GCD and LCM (合数分解)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 4497 GCD and LCM (非原创)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- HDU 4497 GCD and LCM (数论)
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- hdu 4497 GCD and LCM(2013 ACM-ICPC吉林通化全国邀请赛——题目重现)
质分解 + 简单计数.当时去比赛的时候太年轻了...这道题都没敢想.现在回过头来做了一下,发现挺简单的,当时没做这道题真是挺遗憾的.这道题就是把lcm / gcd 质分解,统计每个质因子的个数,然后 ...
- HDU 4497 GCD and LCM (分解质因数)
链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...
- HDU 4497 GCD and LCM 素因子分解+ gcd 和 lcm
题意: 给两个数,lll 和 ggg,为x , y , z,的最小公倍数和最大公约数,求出x , y , z 的值有多少种可能性 思路: 将x , y , z进行素因子分解 素因子的幂次 x a1 a ...
随机推荐
- Cheatsheet: 2018 03.01 ~ 2018 03.31
Docker A Developer's Guide to Docker: A Gentle Introduction The Advantages of Using Kubernetes and D ...
- Java学习--list,set,Map接口使用
list接口: 泛型:规定list中的元素的类型 /* * * 泛型不能使用基本数据类型(可以使用基本类型的包装类) * */ public void tes ...
- 有关动态规划(主要是数位DP)的一点讨论
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家在研究多阶段决策过程的优化问题时, ...
- 使用jQuery获取Dribbble的内容
Introduction As a web developer, third party API integration is something you will have to face. Esp ...
- django基础一之web框架的本质
一 web框架的本质及自定义web框架 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的浏览器就是一个socket客户端,基于请求做出响应,客户都先请求,服务端做出对应的响 ...
- bootstrap学习笔记细化(按钮)
button:btn 圆角灰色按钮 button:btn btn-default 圆角灰色边框按钮 button:btn btn-success 绿色 button:btn btn-primary 蓝 ...
- Angular入门教程二
4 功能介绍 4.1数据绑定 AngularJS的双向数据绑定,意味着你可以在Mode(JS)中改变数据,而这些变动立刻就会自动出现在View上,反之亦然.即:一方面可以做到model变化驱动了DOM ...
- BaseActivity合集
1.出自“高仿京东商城”: package com.itau.jingdong.ui.base; import com.itau.jingdong.AppManager; import com.ita ...
- Python爬虫教程-09-error 模块
Python爬虫教程-09-error模块 今天的主角是error,爬取的时候,很容易出现错,所以我们要在代码里做一些,常见错误的处,关于urllib.error URLError URLError ...
- 毕向东_Java基础视频教程第20天_IO流(7~10)
第20天-07-IO流(递归) package bxd; import java.io.File; public class FileDemo3 { // 非递归打印 public static vo ...