数论——算数基本定理 - HDU 4497 GCD and LCM
GCD and LCM
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3379 Accepted Submission(s): 1482
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z.
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
The next T lines, each contains two positive 32-bit signed integers, G and L.
It’s guaranteed that each answer will fit in a 32-bit signed integer.
6 72
7 33
0
gcd(x,y,z) == G, lcm(x,y,z) == L
x' = x /G,y' = y /G ,z' = z / G; gcd( x', y',z') == 1,lcm(x',y',z') == L/G
这样的话对t = L/G 这个数进行素因子分解,t = p1^t1 * p2^t2 * p3^t3 ..... * pn ^tn;
满足上面条件的x,y,z一定为这样的形式。
x' = p1^i1 * p2^i2 *```* pn^in.
y' = p1^j1 * p2^j2 * ```*pn^jn.
z' = p1^k1 * p2^k2 * ```*pn^kn.
为了满足上面的条件,对于p1,一定有max(i1,j1,k1) = t1和min(i1,j1,k1) =0;
因为gcd(p1^i1,p1^j1,p1^k1)== 1 → min(i1,j1,k1) == 0;lcm(p1^i1,p1^j1,p1^k1) == p1^t1 => max(i1,j1,k1) == t1;
所以我们现在要做的是把L/G分解成n个素因数相乘,比如:28=2*2*7=2^2 * 7
对于每一个p来说,三个数的集合一定是{ 0, t, x | 0≤x≤t }
- x = 0 或 x = t:这种情况有
= 6 种
- 0 < x < t:这种情况x的取值可以为 0~t 的整数,一共有 t-1 个,而每一个数,都可以有
种排列方法,就是6*(t-1)
所以对每一个P来说,最后一共有 6*t 种取法 。
举个例子:252=2*2*7=2^2 * 3^3 * 7 一共有6*2+6*3+6=36种不同的(x,y,z)序列。
而如果L%G!=0,自然就没有解
#include <iostream> using namespace std; int f1(int n) { , i = ; ) { ; ){ ) { t++; n /= i; } res *= * t; } i++; } return res; } int main() { int T; cin >> T; while (T--) { int G, L; cin >> G >> L; ) cout << << endl; else cout << f1(L / G) << endl; } ; }
数论——算数基本定理 - HDU 4497 GCD and LCM的更多相关文章
- HDU 4497 GCD and LCM(数论+容斥原理)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 4497 GCD and LCM 数学
GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...
- HDU 4497 GCD and LCM (合数分解)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- hdu 4497 GCD and LCM (非原创)
GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total ...
- HDU 4497 GCD and LCM (数论)
题意:三个数x, y, z. 给出最大公倍数g和最小公约数l.求满足条件的x,y,z有多少组. 题解:设n=g/l n=p1^n1*p2^n2...pn^nk (分解质因数 那么x = p1^x1 * ...
- HDU 4497 GCD and LCM(分解质因子+排列组合)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...
- hdu 4497 GCD and LCM(2013 ACM-ICPC吉林通化全国邀请赛——题目重现)
质分解 + 简单计数.当时去比赛的时候太年轻了...这道题都没敢想.现在回过头来做了一下,发现挺简单的,当时没做这道题真是挺遗憾的.这道题就是把lcm / gcd 质分解,统计每个质因子的个数,然后 ...
- HDU 4497 GCD and LCM (分解质因数)
链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4497 假设G不是L的约数 就不可能找到三个数. L的全部素因子一定包括G的全部素因子 而且次方数 ...
- HDU 4497 GCD and LCM 素因子分解+ gcd 和 lcm
题意: 给两个数,lll 和 ggg,为x , y , z,的最小公倍数和最大公约数,求出x , y , z 的值有多少种可能性 思路: 将x , y , z进行素因子分解 素因子的幂次 x a1 a ...
随机推荐
- [PHP] 从PHP 5.6.x 移植到 PHP 7.0.x不兼容点
1.错误和异常处理 1.1 set_exception_handler()函数申明的类型 function handler($e){ var_dump($e); } set_exception_han ...
- Druid SqlParser理解及使用入门
以前的项目中很少去思考SQL解析这个事情,即使在saas系统或者分库分表的时候有涉及到也会有专门的处理方案,这些方案也对使用者隐藏了实现细节. 而最近的这个数据项目里面却频繁涉及到了对SQL的处理,原 ...
- eclipse 更改背景颜色字体
原文 切一个自己的图: 废话不说,直接入题. 方式一:替换Eclipse的配置文件 其实Eclipse的各种配置都是在文件设置里的,因此只要用一个配置好的模版来替换默认的配置文件,即可将所有配置克隆到 ...
- 深入分析ReentrantLock公平锁和非公平锁的区别 (转)
在ReentrantLock中包含了公平锁和非公平锁两种锁,通过查看源码可以看到这两种锁都是继承自Sync,而Sync又继承自AbstractQueuedSynchronizer,而AbstractQ ...
- 洛谷P4165 [SCOI2007]组队(排序 堆)
题意 题目链接 Sol 跟我一起大喊:n方过百万,暴力踩标算! 一个很显然的思路是枚举\(H, S\)的最小值算,复杂度\(O(n^3)\) 我们可以把式子整理一下,变成 \[A H_i + B S_ ...
- 1475 m进制转十进制
1475 m进制转十进制 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 题目描述 Description 将m进制数n转化成一个十进制数 ...
- drupal7 用到的一些钩子简介
1.hook_user_delete($account) 可用于自定义模块中,当用户被删除时,可以自定义一些自己需要的处理动作 2.hook_mail_alter(&$message) 可用于 ...
- 当EditText编辑时 hint 在 6.0 手机上显示不出来
当EditText编辑时 hint 在 6.0 手机上显示不出来.... 就要增加一句话去重新设置颜色值 Android:textColorHint = "#707070"
- Node.js 常用 API
Node.js v6.11.2 Documentation(官方文档) Buffer Prior to the introduction of TypedArray in ECMAScript 20 ...
- Hbase集群部署
1.安装Hadoop集群 这个之前已经写过 2.安装Zookeeper 这个之前也已经写过 3.下载hbase,放到master机器,解压 4.修改hbase-env.sh,添加Java地址 expo ...