1063 wuli51和京导的毕业旅行

思路

中等题,二分+贪心。

简化题意,将m+1个数字分成n份,ans为这n段中每段数字和的最大值,求ans最小值及其方案。

对于这种求最小的最大值,最常用的方法是二分。答案一定在[0,sum]之间,通过判断是否符合要求可以求得ans。在本题中,ans一定是整数,所以二分过程中left、mid、right也是整数。

如何判断是否符合要求?对于某一mid值,遍历一次露营地距离数组,通过贪心,总是使一天内的行程尽可能接近mid,但不可超过mid。若是加上某一露营地距离超过了mid,代表需要露营一次。最后通过比较露营数cnt与数据要求n-1的大小判断是否符合要求。

那又如何输出方案呢?其实在二分的过程中已经体现了,恰好题目中也是要求前面行程数x尽可能大。所以贪心输出,总是尽可能填满某一天的行程。

贪心还需要注意一个问题,就是输出必须得有n个数,也就是说贪心前得判断一下后面是否有足够的数保准每天都有行程。例如对于n=3,m=2,xi=3,2,1,输出ans应为3,方案应为3,2,1,而不是3,3。

分析

时间复杂度:O(nlgn)。

参考代码

//
// Created by AlvinZH on 2017/12/6.
// Copyright (c) AlvinZH. All rights reserved.
// #include <cstdio> int n, m;
int sum;//行程总和
int D[10005]; bool check(int X)
{
int cnt = 0;
int temp = 0;
for(int i = 1; i <= m; i++)
{
if(D[i] > X) return false;
if(temp + D[i] > X)
{
temp = D[i];
cnt++;
}
else
temp += D[i];
}
return cnt <= n-1;
} int MinMaxX()//二分法求得min(max(xi))
{
int l = 0, r = sum;
while(l <= r)
{
int mid = (l+r) / 2;
if(check(mid))
r = mid - 1;
else
l = mid + 1;
}
return l;
} int main()
{
while(~scanf("%d %d", &n, &m))
{
sum = 0;
m += 1;
for(int i = 1; i <= m; i++)
{
scanf("%d", &D[i]);
sum += D[i];
} int ans = MinMaxX();
printf("%d\n", ans); int cnt = 0;
int temp = 0;
for(int i = 1; i <= m; i++)
{
if(D[i]+temp > ans || n-1 - cnt > m-i)//无法合并||只剩下m-i段,[i+1~m]
{
printf("%d ", temp);
temp = D[i];
cnt++;
}
else
temp += D[i];
}
printf("%d\n", temp);
}
}

2016级算法期末模拟练习赛-A.wuli51和京导的毕业旅行的更多相关文章

  1. 2016级算法期末模拟练习赛-E.AlvinZH的青春记忆III

    1083 AlvinZH的青春记忆III 思路 难题,二分图. 说这是一个考察二分图的题目,你可以会说"不可能",这哪里像一个二分图了!这真的是一个二分图,考察的是最小顶点覆盖. ...

  2. 2016级算法期末模拟练习赛-F.AlvinZH的青春记忆IV

    1086 AlvinZH的青春记忆IV 思路 难题,动态规划. 这是一道很有意思的题,因为它不仅卡了时间,也卡了空间,而且卡的很妙很迷. 光是理解题意已经有点难度,简化题意:两串数字序列,相等的数字定 ...

  3. 2016级算法期末模拟练习赛-D.AlvinZH的序列问题

    1111 AlvinZH的序列问题 思路 中等题,动态规划. 简化题意,. 坑点一:二维int数组MLE,明显会超过内存限制,由于\(n\)最大为1e4,那么我们的dp数组最大也是1e4,考虑使用sh ...

  4. 2016级算法期末模拟练习赛-B.AlvinZH的青春记忆I

    1083 AlvinZH的青春记忆I 思路 中等题,动态规划. 简化题意,一个环上取数,数不可相邻,取取得数之和最大值. 环不好表示,可以解开变成一列数,那么答案应为下列两种情况较大者. ①:取第一个 ...

  5. 2016级算法期末模拟练习赛-C.AlvinZH的青春记忆II

    1084 AlvinZH的青春记忆II 思路 中等题,二分. 简化题意,一列数字,每秒会自动-1,特殊操作可以使一个数在1s内-k,问这些数都减至0需要多久. 答案肯定在[1,xMax]之间,采用二分 ...

  6. 2016级算法期末上机-H.难题·AlvinZH's Fight with DDLs III

    1119 AlvinZH's Fight with DDLs III 思路 难题,最小点覆盖. 分析题意,某一个任务,既可以在笔记本A的 \(a\) 模式下完成,也可以在笔记本B的 \(b\) 模式下 ...

  7. 2016级算法期末上机-D.简单·AlvinZH's Fight with DDLs I

    1117 AlvinZH's Fight with DDLs I 思路 简单题,动态规划. 本题与期末练习赛B题很相似,而且更为简单些.简化问题:在数字序列上取数,不能取相邻的数. DP数组定义,dp ...

  8. 2016级算法期末上机-B.简单·ModricWang's Fight with DDLs I

    1124 ModricWang's Fight with DDLs I 思路 这道题本质上就是一个多项式求值,题目中的n需要手动算一下,单位复根可以根据复数的性质来求,即\(e^{i\pi}+1=0\ ...

  9. 2016级算法期末上机-I.难题·ModricWang's Fight with DDLs III

    1126 ModricWang's Fight with DDLs III 思路 由于题目中已经说明了时间经过了正无穷,因此初始位置是不重要的,并且每条边.每个点的地位是均等的.因此到达每个点的概率就 ...

随机推荐

  1. web图形方案比较html5、GML、SVG、VML

    GML.SVG和VML都是基于XML的可用来描述矢量图形的标记语言,都是XML词表,它们的语法并不难理解,但它们都有各自不同的用途和特点,下面简单介绍一下. GML(Geography Markup  ...

  2. Java的类名与文件名必须一致

    1.Java保存的文件名必须与类名一致:2.如果文件中只有一个类,文件名必须与类名一致:3.一个Java文件中只能有一个public类:4.如果文件中不止一个类,文件名必须与public类名一致:5. ...

  3. requests.session之set trust_env to disable environment searches for proxies

    import requests s = requests.Session() s.trust_env = False This will prevent requests getting any in ...

  4. 08 Translating RNA into Protein

    Problem The 20 commonly occurring amino acids are abbreviated by using 20 letters from the English a ...

  5. 判断字符串是否为回文 python

    回文正序和逆序一样的字符串,例如abccba 方法一 def is_palindrome1(text): l = list(text) l.reverse() t1 = ''.join(l) if t ...

  6. 个人作业代码GitHub提交步骤

    代码提交地址: https://github.com/eudaem/homework1 步骤: 1)用个人账号登陆GitHub,并访问代码提交地址页面,点击页面右上角的“Fork”按钮,拷贝homew ...

  7. B-spline Curves 学习之B样条曲线的移动控制点、修改节点分析(7)

    B-spline Curves: Moving Control Points 本博客转自前人的博客的翻译版本,前几章节是原来博主的翻译内容,但是后续章节博主不在提供翻译,后续章节我在完成相关的翻译学习 ...

  8. hdu5340—Three Palindromes—(Manacher算法)——回文子串

    Three Palindromes Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  9. 咏南BS开发框架

    咏南BS开发框架 开发工具为:DELPHI 2006及以上版本.欢迎索取演示. 通用的三级权限管理. 登录验证 输入帐号和密码验证登录系统. 功能菜单 在这里设置好菜单,系统运行的时候会根据菜单设置动 ...

  10. SOCK开发之---TCP/IP简介

    在开发通信程序之前,都要先确定这些程序相互通信所使用的协议(protocol),在深入设计前,我们都需要先从高层次来判断通信由哪个程序发起以及相应在何时产生. 举例来说,一般认为web服务器是一个长时 ...