Tensorboard

tensorboard用以图形化展示我们的代码结构和图形化训练误差等,辅助优化程序

tensorboard实际上是tensorflow机器学习框架下的一个工具,需要先安装tensorflow,参考: https://www.cnblogs.com/maskerk/p/9973503.html 的安装过程。

本文tensorboard功能参考链接:www.cnblogs.com/fydeblog/p/7429344.html

微代码测试

代码全文

import tensorflow as tf 

with tf.name_scope('graph') as scope:
a = tf.constant([[3,4]],name = 'a')
b = tf.constant([[5],[6]],name = 'b')
product = tf.matmul(a,b,name='product') sess = tf.Session()
writer = tf.summary.FileWriter('./tensorflow/',sess.graph)
init = tf.global_variables_initializer()
sess.run(init)

启动tensorboard

运行代码之后可以在目录./tensorboard/ 下看到生成了一个文件,用于启动tensorboard。执行tensorboard --logdir ./tensorflow/,打开浏览器127.0.0.1:6006 ,可以看到视图

注:要保证该文件夹下只有一个文件

双击graph可以进一步打开,这就是我们这段微代码的结构

进阶

这里我们基于之前的一段代码,与tensorboard相结合来看下效果。

前文链接:https://www.cnblogs.com/maskerk/p/9973503.html

代码全文

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np #样本数据
with tf.name_scope('sample-data'):
x_train = np.linspace(-1,1,300)[:,np.newaxis]
noise = np.random.normal(0, 0.1, x_train.shape)
y_train = x_train * 3 + noise + 0.8 #
with tf.name_scope('hold-data'):
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1]) #线性模型
with tf.name_scope('line-model'):
W = tf.Variable([0.1],dtype = tf.float32,name='W')
#添加变量W到tensorboard的Distributions下
tf.summary.histogram('Weight',W)
b = tf.Variable([0.1],dtype = tf.float32,name='b')
line_model = W * x + b
#添加变量b到tensorboard的Distributions下
tf.summary.histogram('bias',b) #损失模型
with tf.name_scope("loss-model"):
loss = tf.reduce_sum(tf.square(line_model - y))
#添加变量loss到tensorboard的Scalars下
tf.summary.scalar("loss",loss) #创建优化器
with tf.name_scope("optimizer-model"):
optimizer = tf.train.GradientDescentOptimizer(0.001)
train = optimizer.minimize(loss) #初始化变量
with tf.name_scope("init-model"):
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # 绘制样本数据
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_train, y_train)
plt.ion()
plt.show()
plt.pause(1) #将所有的summary全部保存磁盘
merged = tf.summary.merge_all() #tensorboard所需数据写入文件
writer = tf.summary.FileWriter('./tensorflow/',sess.graph) #训练100次
for i in range(100):
if i % 10 == 0:
#每隔10次打印1次成果
print(i)
print('W:%s b:%s' % (sess.run(W),sess.run(b)))
print('loss:%s' % (sess.run(loss,{x:x_train,y:y_train}))) #绘制拟合直线
try:
ax.lines.remove(lines[0])
except Exception:
pass
lines = ax.plot(x_train, sess.run(W)*x_train+sess.run(b), 'r-', lw=5)
plt.pause(1) sess.run(train,{x:x_train,y:y_train}) #向tensorboard添加数据
rs = sess.run(merged,{x:x_train,y:y_train})
writer.add_summary(rs,i) # 打印训练100次后的成果
print('---')
print('W:%s b:%s' % (sess.run(W),sess.run(b)))
print('loss:%s' % (sess.run(loss,{x:x_train,y:y_train})))

相比前文,这里添加了两部分

  • 1.拟合直线的动态变化图像

  • 2.tensorboard展现数据变化过程

启动tensorboard

tensorboard --logdir ./tensorflow/

可以看到loss(误差大小)的变化曲线

权重值W和偏差b的变化曲线(y = W * x + b)

tensorboard入门的更多相关文章

  1. TensorFlow深度学习笔记 Tensorboard入门

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程: https://ww ...

  2. Pytorch入门上 —— Dataset、Tensorboard、Transforms、Dataloader

    本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例 ...

  3. 超简单tensorflow入门优化程序&&tensorboard可视化

    程序1 任务描述: x = 3.0, y = 100.0, 运算公式 x×W+b = y,求 W和b的最优解. 使用tensorflow编程实现: #-*- coding: utf-8 -*-) im ...

  4. Tensorflow机器学习入门——网络可视化TensorBoard

    一.在代码中标记要显示的各种量 tensorboard各函数的作用和用法请参考:https://www.cnblogs.com/lyc-seu/p/8647792.html import tensor ...

  5. TensorFlow文档翻译-01-TensorFlow入门

    版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/junyang/p/7429771.html TensorFlow入门 英文原文地址:https://w ...

  6. TensorFlow 中文资源全集,官方网站,安装教程,入门教程,实战项目,学习路径。

    Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...

  7. 什么是TensorBoard?

    前言 只有光头才能变强. 文本已收录至我的GitHub仓库,欢迎Star:https://github.com/ZhongFuCheng3y/3y 回顾前面: 从零开始学TensorFlow[01-搭 ...

  8. 学习笔记CB013: TensorFlow、TensorBoard、seq2seq

    tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.S ...

  9. 机器学习入门 - Google的机器学习速成课程

    1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learnin ...

随机推荐

  1. jQuery属性操作之.attr()

    目录 .attr() 调用形式:$("xxx").attr(name) 调用形式:$("xxx").attr(name,value); 调用形式:$(" ...

  2. [译]C语言实现一个简易的Hash table(7)

    上一章我们讲了如何根据需要动态设置hash表的大小,在第四章中,我们使用了双重哈希来解决hash表的碰撞,其实解决方法有很多,这一章我们来介绍下其他方法. 本章将介绍两种解决hash表碰撞的方法: 拉 ...

  3. LVM实操

    说明 以下所有操作都基于centos6.9 什么是LVM LVM是逻辑盘卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬 ...

  4. 【npm 指令】 (不定时持续更新)

    查看webpack所有的版本及更多信息 npm info webpack 查看webpack所有的版本 npm info webpack versions 查看webpack最新的版本 npm vie ...

  5. 树莓派安装SimpleCV

    开源计算机视觉框架.python2 安装 (http://simplecv.readthedocs.io/en/latest/HOWTO-Install%20on%20RaspberryPi.html ...

  6. Python学习:16.Python面对对象(三、反射,构造方法,静态字段,静态方法)

    一.构造方法 在使用类创建对象的时候(就是类后面加括号)就自动执行__init__方法. class A: def __init__(self): print('A') class B: def __ ...

  7. SET HANDLER - FOR

    Syntax SET HANDLER handler1 handler2 ... FOR { oref |{ALL INSTANCES} }                               ...

  8. 以太坊入门-solidity环境搭建

    本地remix-ide安装教程 一 开始安装前 准备以下软件 vs2015(主要会用到vc++的工具以及Windows sdk  ||vs2017没试过,不过应该可以) vs下载安装以及解压地址: h ...

  9. fixed layout android

    http://benfrain.com/easy-css-fix-fixed-positioning-android-2-2-2-3/ http://caniuse.com/#feat=css-fix ...

  10. 补交 20155202 蓝墨云班课 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能

    蓝墨云班课 编写MyCP.java 要求: 编写MyCP.java 实现类似Linux下cp XXX1 XXX2的功能,要求MyCP支持两个参数: java MyCP -tx XXX1.txt XXX ...