Spark shuffle调优
1:sparkconf.set("spark.shuffle.file.buffer","64K") --不建议使用,因为这么写相当于硬编码
2:在conf/spark-default.conf ---不建议使用,相当于硬编码
3:./spark-submit --conf spark.shuffle.file.buffer=64 --conf spark.reducer.maxSizeInFlight=96 --建议使用
spark.shuffle.file.buffer
默认值:32k
参数说明:该参数用于设置shuffle write task的BufferedOutputStream的buffer缓冲大小。将数据写到磁盘文件之前,会先写入buffer缓冲中,待缓冲写满之后,才会溢写到磁盘。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如64k),从而减少shuffle write过程中溢写磁盘文件的次数,也就可以减少磁盘IO次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.reducer.maxSizeInFlight
默认值:48m
参数说明:该参数用于设置shuffle read task的buffer缓冲大小,而这个buffer缓冲决定了每次能够拉取多少数据。
调优建议:如果作业可用的内存资源较为充足的话,可以适当增加这个参数的大小(比如96m),从而减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。在实践中发现,合理调节该参数,性能会有1%~5%的提升。
spark.shuffle.io.maxRetries
默认值:3
参数说明:shuffle read task从shuffle write task所在节点拉取属于自己的数据时,如果因为网络异常导致拉取失败,是会自动进行重试的。该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败。
调优建议:对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
shuffle file not find taskScheduler不负责重试task,由DAGScheduler负责重试stage
spark.shuffle.io.retryWait
默认值:5s
参数说明:具体解释同上,该参数代表了每次重试拉取数据的等待间隔,默认是5s。
调优建议:建议加大间隔时长(比如60s),以增加shuffle操作的稳定性。
spark.shuffle.memoryFraction
默认值:0.2
参数说明:该参数代表了Executor内存中,分配给shuffle read task进行聚合操作的内存比例,默认是20%。
调优建议:如果内存充足,而且很少使用持久化操作,建议调高这个比例,给shuffle read的聚合操作更多内存,以避免由于内存不足导致聚合过程中频繁读写磁盘。在实践中发现,合理调节该参数可以将性能提升10%左右。
spark.shuffle.manager
默认值:sort|hash
参数说明:该参数用于设置ShuffleManager的类型。Spark 1.5以后,有三个可选项:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默认选项,但是Spark 1.2以及之后的版本默认都是SortShuffleManager了。tungsten-sort与sort类似,但是使用了tungsten计划中的堆外内存管理机制,内存使用效率更高。
调优建议:由于SortShuffleManager默认会对数据进行排序,因此如果你的业务逻辑中需要该排序机制的话,则使用默认的SortShuffleManager就可以;而如果你的业务逻辑不需要对数据进行排序,那么建议参考后面的几个参数调优,通过bypass机制或优化的HashShuffleManager来避免排序操作,同时提供较好的磁盘读写性能。这里要注意的是,tungsten-sort要慎用,因为之前发现了一些相应的bug。
spark.shuffle.sort.bypassMergeThreshold----针对SortShuffle
默认值:200
参数说明:当ShuffleManager为SortShuffleManager时,如果shuffle read task的数量小于这个阈值(默认是200),则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
调优建议:当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量。那么此时就会自动启用bypass机制,map-side就不会进行排序了,减少了排序的性能开销。但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
spark.shuffle.consolidateFiles----针对HashShuffle
默认值:false
参数说明:如果使用HashShuffleManager,该参数有效。如果设置为true,那么就会开启consolidate机制,会大幅度合并shuffle write的输出文件,对于shuffle read task数量特别多的情况下,这种方法可以极大地减少磁盘IO开销,提升性能。
调优建议:如果的确不需要SortShuffleManager的排序机制,那么除了使用bypass机制,还可以尝试将spark.shffle.manager参数手动指定为hash,使用HashShuffleManager,同时开启consolidate机制。在实践中尝试过,发现其性能比开启了bypass机制的SortShuffleManager要高出10%~30%。
Spark shuffle调优的更多相关文章
- Spark Shuffle调优原理和最佳实践
对性能消耗的原理详解 在分布式系统中,数据分布在不同的节点上,每一个节点计算一部份数据,如果不对各个节点上独立的部份进行汇聚的话,我们计算不到最终的结果.我们需要利用分布式来发挥Spark本身并行计算 ...
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- Spark(九)Spark之Shuffle调优
一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark性能优化--数据倾斜调优与shuffle调优
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...
- Spark性能优化:shuffle调优
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- spark调优——Shuffle调优
在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节m ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...
- Spark性能调优之代码方面的优化
Spark性能调优之代码方面的优化 1.避免创建重复的RDD 对性能没有问题,但会造成代码混乱 2.尽可能复用同一个RDD,减少产生RDD的个数 3.对多次使用的RDD进行持久化(ca ...
随机推荐
- 通过面试题,让我们来了解Collection
前言 欢迎关注公众号:Coder编程 获取最新原创技术文章和相关免费学习资料,随时随地学习技术知识!** 本章主要介绍Collection集合相关知识,结合面试中会提到的相关问题进行知识点的梳理.希望 ...
- IOS渐变图层CAGradientLayer
看支付宝蚂蚁积分,天气预报等好多APP都有圆形渐变效果,今天就试着玩了. 一.CAGradientLayer类中属性介绍 CAGradientLayer继承CALayer,主要有以下几个属性: 1.@ ...
- &&和||的操作符妙用(javascript)
前言 &&逻辑与和||逻辑或,它们既可以返回一个布尔值,又可以返回指定操作数的值,这个值是非布尔型的. MDN api参考 Section1 布尔运算 首先,我们明确一下基础知识. 能 ...
- MongoDB 从入门到精通
1,安装并启动数据库 从官网(www.mongodb.org/downloads)下载一个适合你平台的版本,我的系统是win7 64位的,下载文件也就10几M,将下载的文件解压放到任何目录 ...
- SpringJunit4 进行单元测试(实例篇--紧接上一章)
前言: 在做WEB项目时,我们写好了一个Dao和Service后,接下来就是要进行单元测试,测试的时候还要等到Spring容器全部加载完毕后才能进行,然后通过拿到ApplicationContext对 ...
- 常见IT英语短语一
SSO (Single sign-on)单点登陆. aspect-oriented programming,AOP面向切面. CORS:Cross-origin resource sharing跨域资 ...
- C#获取AD域中计算机和用户的信息
如果你的计算机加入了某个AD域,则可以获取该域中所有的计算机和用户的信息. 所用程序集,需要.Net Framework 4. 添加程序集引用 System.DirectoryServices.Acc ...
- k:特殊的线性表—队列
队列的概念: 队列是另一种特殊的线性表,它的特殊性体现在其只允许在线性表的一端插入数据元素,在线性表的另一端删除数据元素(一般会采用在线性表的表尾那端(没被head指针所指的那端)插入数据元素,在线 ...
- Java数组声明与拷贝的几种方式
Java数组声明的三种方式 第一种(声明并初始化): 数据类型[] 数组名={值,值,...}; 例:int[] a = {1,2,3,4,5,6,7,8}; ...
- Java的文档注释之生成帮助文档
示例: /** * Title: Person类<br/> * Description:通过Person类说明Java中的文档注释<br/> * Company: *** * ...