OpenCV中Mat总结
一、数字图像存储概述
数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵。
二、Mat的存储
1、OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘记释放内存,就会造成内存泄漏。
2、从OpenCV2开始,开始使用Mat类存储图像,具有以下优势:
(1)图像的内存分配和释放由Mat类自动管理
(2)Mat类由两部分数据组成:矩阵头(包含矩阵尺寸、存储方法、存储地址等)和一个指向存储所有像素值的矩阵(根据所选存储方法的不同,矩阵可以是不同的维数)的指针。Mat在进行赋值和拷贝时,只复制矩阵头,而不复制矩阵,提高效率。如果矩阵属于多个Mat对象,则通过引用计数来判断,当最后一个使用它的对象,则负责释放矩阵。
(3)可以使用clone和copyTo函数,不仅复制矩阵头还复制矩阵。
三、Mat创建
1、使用Mat构造函数
Mat test(2,2,CV_8UC3,Scalar(0,0,255));
2、使用Mat构造函数2
int sizes[3] = {2,2,2};
Mat test(3,sizes,CV_8UC3,Scalar::all(0));
3、为已存在的IplImage指针创建信息头
IplImage* img = cvLoadImage("1.jpg",1);
Mat test(img);
4、利用create函数
Mat test;
test.create(4,4,CV_8UC2);
5、采用Matlab形式的初始化方式
(1)Mat me = Mat::eye(4,4,CV_64F);
(2)Mat mo = Mat::ones(2,2,CV_32F);
(3)Mat mz = Mat::zeros(3,3,CV_8UC1);
注:元素类型,即CV_[位数][带符号与否][类型前缀]C[通道数]
四、Mat中相关成员的意义
1、data
Mat对象中的一个指针,指向存放矩阵数据的内存(uchar* data)
2、dims
矩阵的维度,3*4的矩阵维度为2维,3*4*5的矩阵维度为3维
3、channels
矩阵通道,矩阵中的每一个矩阵元素拥有的值的个数,比如说 3 * 4 矩阵中一共 12 个元素,如果每个元素有三个值,那么就说这个矩阵是 3 通道的,即 channels = 3。常见的是一张彩色图片有红、绿、蓝三个通道。
4、depth
深度,即每一个像素的位数,也就是每个通道的位数。在opencv的Mat.depth()中得到的是一个0 – 6的数字,分别代表不同的位数:enum { CV_8U=0, CV_8S=1, CV_16U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 },可见 0和1都代表8位, 2和3都代表16位,4和5代表32位,6代表64位。
5、elemSize
矩阵中每个元素的大小,每个元素包含channels个通道。如果Mat中的数据的数据类型是CV_8U那么elemSize = 1;是CV_8UC3那么elemSize = 3,是CV_16UC2那么elemSize = 4。
6、elemSize1
矩阵中数据类型的大小,即elemSize/channels,也就是depth对应的位数。
7、step
是一个数组,定义了矩阵的布局,参考下图


若矩阵有n维,则step数组大小为n
step[n-1] = elemSize(每个矩阵元素的数据大小)
step[n-2] = size(1维)*elemSize
step[n-3] = size(2维)*size(1维)*elemSize
...
step[0] = size(n-1维)*size(n-2维)*...size(1维)*elemSize
8、step1
step1也是一个数组,为step/elemSize1,若矩阵有n维,则step1[n-1] = channels。
9、type
矩阵元素的类型,即创建Mat时传递的类型,例如CV_8UC3、CV_16UC2等。
OpenCV中Mat总结的更多相关文章
- OpenCV中Mat的列向量归一化
OpenCV中Mat的列向量归一化 http://blog.csdn.net/shaoxiaohu1/article/details/8287528 OpenCV中Mat的列向量归一化 标签: Ope ...
- Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘.dot.mul运算详解 2016年09月02日 00:00:36 -牧野- 阅读数:59593 标签: Opencv矩阵相乘点乘dotmul 更多 个人分类: O ...
- opencv中mat类介绍
The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It ...
- OpenCV中Mat操作clone() 与copyto()的区别
OpenCV中Mat操作clone() 与copyto()的区别 // Mat is basically a class with two data parts: the matrix header ...
- OpenCV中Mat的属性
OpenCV中Mat的属性 最近在做一OpenCV的图像轮廓检验,但当用到霍夫变换时才发现对Mat的属性了解不足.Mat在OpenCV中的地位是及其重要的,因此有必要做一个总结. 大体上来说,Mat是 ...
- OpenCV中Mat的基本用法:创建、复制
OpenCV中Mat的基本用法:创建.复制 一.Mat类的创建: 1.方法一: 通过读入一张图像,直接将其转换成Mat对象. Mat image = imread("test.jpg&quo ...
- opencv中Mat与IplImage,CVMat类型之间转换
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...
- opencv中Mat类型数据操作与遍历
Mat作为opencv中一种数据类型常常用来存储图像,相对与以前的IplImgae类型来说,Mat类型省去了人工的对内存的分配与释放,转而自动分配释放.Mat Class主要包括两部个数据部分:一个是 ...
- OpenCV中Mat的使用
一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘 ...
随机推荐
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- git命令行 整理(一位大神给我的私藏)
Evernote Export Git 是一个很强大的分布式版本控制系统.它不但适用于管理大型开源软件的源代码,管理私人的文档和源代码也有很多优势. Git常用操作命令: 1) 远程仓库相关命令 检出 ...
- Windows 通过批处理自动执行 linux服务器上面命令的办法
1. 使用putty 下载地址 https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html 直接使用 exe版本就可以 https:/ ...
- Linux -- nginx
一. 网络服务 web服务器和web框架的关系 web服务器(nginx):接收HTTP请求(例如www.baidu.com)并返回数据 web框架(django,flask):开发web应用程序,处 ...
- nginx(二)nginx的安装
下载 nginx官网下载地址 把源码解压缩之后,在终端里运行如下命令: ./configure make make install 默认情况下,Nginx 会被安装在 /usr/local/nginx ...
- 使用nginx部署网站
前面的话 如果服务器只需要放置一个网站程序,解析网站到服务器的网站,网站程序监听80端口就可以了.如果服务器有很多应用,借助nginx不仅可以实现端口的代理,还可以实现负载均衡.本文将详细介绍前端及n ...
- x86汇编语言实践(1)
0 写在前面 为了更深入的了解程序的实现原理,近期我学习了IBM-PC相关原理,并手工编写了一些x86汇编程序. 在2017年的计算机组成原理中,曾对MIPS体系结构及其汇编语言有过一定的了解,考虑到 ...
- tomcat8 源码分析 | 组件及启动过程
tomcat 8 源码分析 ,本文主要讲解tomcat拥有哪些组件,容器,又是如何启动的 推荐访问我的个人网站,排版更好看呦: https://chenmingyu.top/tomcat-source ...
- c语言计算过程中的过程转换
graph BT float==>double; id1[char, short]==>int; int-->unsigned unsigned-->long long--&g ...
- <二>ELK-6.5.3学习笔记–使用rsyslog传输管理nginx日志
http://www.eryajf.net/2362.html 转载于 本文预计阅读时间 28 分钟 文章目录[隐藏] 1,nginx日志json化. 2,发送端配置. 3,接收端配置. 4,配置lo ...