设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离  $$\bex  \rd (\beta,W)=|\beta-\beta'|,  \eex$$  其中 $\beta'$ 为 $\beta$ 在 $W$ 上的正交投影. 设 $\beta_1,\cdots,\beta_m$ 为 $W$ 的一组基, 则  $$\bex  \rd (\beta,W)=\sqrt{\frac{G(\beta_1,\cdots,\beta_m,\beta)}{G(\beta_1,\cdots,\beta_m)}}.  \eex$$  证明:  $$\beex  \bea  &\quad G(\beta_1,\cdots,\beta_m,\beta)\\  &=G(\beta_1,\cdots,\beta_m,\beta'+(\beta-\beta'))\\  &=G(\beta_1,\cdots,\beta_m,\beta')  +G(\beta_1,\cdots,\beta_m,\beta-\beta')\quad\sex{\mbox{行列式的性质}}\\  &=G(\beta_1,\cdots,\beta_m,\beta-\beta')\quad\sex{\beta\in W\ra \beta=\sum_i c_i\beta_i\mbox{ 及行列式的性质}}\\  &=\sev{\ba{cccc}  (\beta_1,\beta_1)&\cdots&(\beta_1,\beta_m)&(\beta_1,\beta-\beta')\\  \vdots&\ddots&\vdots&\vdots\\  (\beta_m,\beta_1)&\cdots&(\beta_m,\beta_m)&(\beta_m,\beta-\beta')\\  (\beta-\beta',\beta_1)&\cdots&(\beta-\beta',\beta_m)&(\beta-\beta',\beta-\beta')  \ea}\\  &=\sev{\ba{cccc}  (\beta_1,\beta_1)&\cdots&(\beta_1,\beta_m)&0\\  \vdots&\ddots&\vdots&\vdots\\  (\beta_m,\beta_1)&\cdots&(\beta_m,\beta_m)&0\\  0&\cdots&0&(\beta-\beta',\beta-\beta')  \ea}\quad\sex{\sex{\beta-\beta',\beta_i}=0}\\  &=|\beta-\beta'|^2G(\beta_1,\cdots,\beta_m)\\  &=\rd^2(\beta,W)G(\beta_1,\cdots,\beta_m).  \eea  \eeex$$

Gram 矩阵与向量到子空间的距离的更多相关文章

  1. 学习笔记DL005:线性相关、生成子空间,范数,特殊类型矩阵、向量

    线性相关.生成子空间. 逆矩阵A⁽-1⁾存在,Ax=b 每个向量b恰好存在一个解.方程组,向量b某些值,可能不存在解,或者存在无限多个解.x.y是方程组的解,z=αx+(1-α),α取任意实数. A列 ...

  2. Gram 矩阵性质及应用

    v1,v2,-,vn 是内积空间的一组向量,Gram 矩阵定义为: Gij=⟨vi,vj⟩,显然其是对称矩阵. 其实对于一个XN⋅d(N 个样本,d 个属性)的样本矩阵而言,X⋅X′ 即为 Gram ...

  3. 学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵

    线性代数,面向连续数学,非离散数学.<The Matrix Cookbook>,Petersen and Pedersen,2006.Shilov(1977). 标量.向量.矩阵.张量. ...

  4. Spark机器学习中ml和mllib中矩阵、向量

    1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向D ...

  5. Python 矩阵与矩阵以及矩阵与向量的乘法

    import numpy as np numpy模块的array相乘时,有两种方式:一是矩阵形式,二是挨个相乘. 需要用矩阵形式相乘时,则要用np.dot()函数. #矩阵与矩阵相乘a = np.ar ...

  6. MathType输入矩阵或者向量的注意事项

    如图A区域是换行搞得,BC是插入矩阵,AC明显看着不一样,就是说行间不要使用换行,列间隔不要用空格(ctrl+shift+space),直接插入矩阵,向量就是矩阵的行或者列数目是1. 还有就是需要注意 ...

  7. Eigen中的矩阵及向量运算

    Eigen中的矩阵及向量运算 ,[+,+=,-,-=] ,[\*,\*=] ,[.transpose()] ,[.dot(),.cross(),.adjoint()] ,针对矩阵元素进行的操作[.su ...

  8. Gram矩阵 迁移学习 one-shot 之类

    格拉姆矩阵是由内积空间中的向量两两内积而得.格拉姆矩阵在向量为随机的情况下也是协方差矩阵.每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特 ...

  9. 两矩阵各向量余弦相似度计算操作向量化.md

    余弦相似度计算: \cos(\bf{v_1}, \bf{v_2}) = \frac{\left( v_1 \times v_2 \right)}{||v_1|| * ||v_2|| } \cos(\b ...

随机推荐

  1. C#默认参数原理探究

    起因 写这一篇的起因是想要通过新增默认参数来代替以前的方法,结果发现尽管在调用时写起来一样,实际上也没有被当做同样的方法,两个方法大致如下: // 先前的方法-删除 private static st ...

  2. Redis操作集合,有序集合

    Set操作,Set集合就是不允许重复的列表 sadd(name,values) 1 # name对应的集合中添加元素 scard(name) 1 获取name对应的集合中元素个数 sdiff(keys ...

  3. 爬虫系列---selenium详解

    一 安装 pip install Selenium 二 安装驱动 chrome驱动文件:点击下载chromedriver (yueyu下载) 三 配置chromedrive的路径(仅添加环境变量即可) ...

  4. Linux systemtap定位系统IO资源使用情况(ok)

    一.systemtap介绍 SystemTap是一个强大的调试工具,是监控和跟踪运行中的Linux 内核的操作的动态方法,确切的说应该是一门调试语言,因为它有自己的语法,也有解析.编译.运行等过程(准 ...

  5. springboot中,页面访问不到静态资源

    例一,静态资源放在默认的目录,如:resources/static或resources/templates 访问静态资源的时候,路径不应带上默认目录,因为springboot默认从这些目录下开始加载, ...

  6. python接口自动化-post请求1

    一.查看官方文档 1. 学习一个新的模块,直接用 help 函数就能查看相关注释或案例内容,例如 具体信息如下,可查看 python 发送 ge t和 post 请求的案例: F:\test-req- ...

  7. 期末架构-Centos7

    00--linux运维架构演变过程 01--老男孩教育-CentOS6和7 01-笔记 安装系统 系统下载地址:http://mirrors.aliyun.com/centos/7/isos/x86_ ...

  8. debian8下acme nginx 部署记录

    1.更新源 apt update 2.安装curl git apt install curl git -y 3.克隆acme仓库 curl https://get.acme.sh | sh git c ...

  9. wxWidgets 和 QT 之间的选择

    (非原创,网络摘抄) 跨平台的C++ GUI工具库很多,可是应用广泛的也就那么几个,Qt.wxWidgets便是其中的翘楚这里把GTK+排除在外,以C实现面向对象,上手相当困难,而且Windows平台 ...

  10. 实现简单的printf函数

    首先,要介绍一下printf实现的原理 printf函数原型如下: int printf(const char* format,...); 返回值是int,返回输出的字符个数. 例如: int mai ...