设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离  $$\bex  \rd (\beta,W)=|\beta-\beta'|,  \eex$$  其中 $\beta'$ 为 $\beta$ 在 $W$ 上的正交投影. 设 $\beta_1,\cdots,\beta_m$ 为 $W$ 的一组基, 则  $$\bex  \rd (\beta,W)=\sqrt{\frac{G(\beta_1,\cdots,\beta_m,\beta)}{G(\beta_1,\cdots,\beta_m)}}.  \eex$$  证明:  $$\beex  \bea  &\quad G(\beta_1,\cdots,\beta_m,\beta)\\  &=G(\beta_1,\cdots,\beta_m,\beta'+(\beta-\beta'))\\  &=G(\beta_1,\cdots,\beta_m,\beta')  +G(\beta_1,\cdots,\beta_m,\beta-\beta')\quad\sex{\mbox{行列式的性质}}\\  &=G(\beta_1,\cdots,\beta_m,\beta-\beta')\quad\sex{\beta\in W\ra \beta=\sum_i c_i\beta_i\mbox{ 及行列式的性质}}\\  &=\sev{\ba{cccc}  (\beta_1,\beta_1)&\cdots&(\beta_1,\beta_m)&(\beta_1,\beta-\beta')\\  \vdots&\ddots&\vdots&\vdots\\  (\beta_m,\beta_1)&\cdots&(\beta_m,\beta_m)&(\beta_m,\beta-\beta')\\  (\beta-\beta',\beta_1)&\cdots&(\beta-\beta',\beta_m)&(\beta-\beta',\beta-\beta')  \ea}\\  &=\sev{\ba{cccc}  (\beta_1,\beta_1)&\cdots&(\beta_1,\beta_m)&0\\  \vdots&\ddots&\vdots&\vdots\\  (\beta_m,\beta_1)&\cdots&(\beta_m,\beta_m)&0\\  0&\cdots&0&(\beta-\beta',\beta-\beta')  \ea}\quad\sex{\sex{\beta-\beta',\beta_i}=0}\\  &=|\beta-\beta'|^2G(\beta_1,\cdots,\beta_m)\\  &=\rd^2(\beta,W)G(\beta_1,\cdots,\beta_m).  \eea  \eeex$$

Gram 矩阵与向量到子空间的距离的更多相关文章

  1. 学习笔记DL005:线性相关、生成子空间,范数,特殊类型矩阵、向量

    线性相关.生成子空间. 逆矩阵A⁽-1⁾存在,Ax=b 每个向量b恰好存在一个解.方程组,向量b某些值,可能不存在解,或者存在无限多个解.x.y是方程组的解,z=αx+(1-α),α取任意实数. A列 ...

  2. Gram 矩阵性质及应用

    v1,v2,-,vn 是内积空间的一组向量,Gram 矩阵定义为: Gij=⟨vi,vj⟩,显然其是对称矩阵. 其实对于一个XN⋅d(N 个样本,d 个属性)的样本矩阵而言,X⋅X′ 即为 Gram ...

  3. 学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵

    线性代数,面向连续数学,非离散数学.<The Matrix Cookbook>,Petersen and Pedersen,2006.Shilov(1977). 标量.向量.矩阵.张量. ...

  4. Spark机器学习中ml和mllib中矩阵、向量

    1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向D ...

  5. Python 矩阵与矩阵以及矩阵与向量的乘法

    import numpy as np numpy模块的array相乘时,有两种方式:一是矩阵形式,二是挨个相乘. 需要用矩阵形式相乘时,则要用np.dot()函数. #矩阵与矩阵相乘a = np.ar ...

  6. MathType输入矩阵或者向量的注意事项

    如图A区域是换行搞得,BC是插入矩阵,AC明显看着不一样,就是说行间不要使用换行,列间隔不要用空格(ctrl+shift+space),直接插入矩阵,向量就是矩阵的行或者列数目是1. 还有就是需要注意 ...

  7. Eigen中的矩阵及向量运算

    Eigen中的矩阵及向量运算 ,[+,+=,-,-=] ,[\*,\*=] ,[.transpose()] ,[.dot(),.cross(),.adjoint()] ,针对矩阵元素进行的操作[.su ...

  8. Gram矩阵 迁移学习 one-shot 之类

    格拉姆矩阵是由内积空间中的向量两两内积而得.格拉姆矩阵在向量为随机的情况下也是协方差矩阵.每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特 ...

  9. 两矩阵各向量余弦相似度计算操作向量化.md

    余弦相似度计算: \cos(\bf{v_1}, \bf{v_2}) = \frac{\left( v_1 \times v_2 \right)}{||v_1|| * ||v_2|| } \cos(\b ...

随机推荐

  1. eclipse设置新建jsp默认编码格式utf-8

  2. CSS---文档流布局 | 脱标-postion-zindex | 脱标-浮动

    一.css文档流布局概念 1.1,什么是标准文档流 1.2,标准文档流下有哪些微观现象 二.CSS---position属性 2.1,position:relative 2.2,position:fi ...

  3. 【Python 22】52周存钱挑战2.0(列表list和math函数)

    1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...

  4. maven 出现错误 -source 1.5 中不支持 diamond 运算符

    mvn clean package -DskipTests 出现如下错误: -source 1.5 中不支持 diamond 运算符 [ERROR] (请使用 -source 7 或更高版本以启用 d ...

  5. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  6. LoadRunner 11 error:Cannot initialize driver dll

    LoadRunner 11 error:Cannot initialize driver dll 这个错误很容易解决,使用win7系统时,有些程序要以管理员身份才能运行. 解决方案:右键选择:“以管理 ...

  7. SQL CREATE TABLE 语句

    CREATE TABLE 语句 CREATE TABLE 语句用于创建数据库中的表. SQL CREATE TABLE 语法 CREATE TABLE 表名称 ( 列名称1 数据类型, 列名称2 数据 ...

  8. Bokeh

    超级好用的显示图像用的package哟~~ 用法自己Google哟~ 特别喜欢这个带各种颜色的Bokeh.palette https://bokeh.pydata.org/en/latest/docs ...

  9. AI deeplab

    参考链接: https://arxiv.org/pdf/1412.7062v3.pdf

  10. 洛谷 P1101 单词方阵

    题目链接 https://www.luogu.org/problemnew/show/P1101 题目描述 给一n×n的字母方阵,内可能蕴含多个"yizhong"单词.单词在方阵中 ...