一、影响MR程序效率的因素

  1.计算机性能:

  CPU、内存、磁盘、网络,

  计算机的性能会影响MR程序的速度与效率

  2.I/O方面

   1)数据倾斜(代码优化)

   2)map和reduce数量设置不合理(通过配置文件后代码中设置)

   3)map运行时间过长,导致reduce等待时间过长

   4)小文件过多(浪费元数据资源,CombineTextInputFormat)

   5)不可分快的超大文件(不断溢写)

   6)多个溢写小文件需要多次合并。

二、MR的优化方法

  MR优化的六个方面:数据输入、map阶段、reduce阶段、IO传输、数据倾斜、参数调优

  1.数据输入

    1)合并小文件:在执行mr任务前就进行小文件合并

    2)采用CombineTextInputFormat来作为输入,解决输入端大量小文件的场景

    MR程序不适合处理大量小文件

  2.Map阶段

    1)减少溢写次数:

    //修改内存大小:mapreduce.task.io.sort.mb

    //修改默认溢写百分百:mapreduce.mps.sort.spill.percent

    2)减少合并次数

    //mapreduce.task.io.sort.factor,将merge值增大

    3)在shuffle阶段不影响业务逻辑情况下使用Combiner

  3.Reduce阶段

    1)设置合理的map与reduce个数

    //map可以通过文件切块的大小,或小文件合并改变maptask数量

    //reduce通过分区partitioner,setNumReduceTasks改变reducetask数量

    2)设置map/reduce共存

   //即map允许到一定程度后,启动reduce减少reduce的等待时间

   //mapreduce.job.reduce.slowstart.completedfmaps(参数越小reduce等待时间越少)

   //合理设置reduce端的buffer:mapreduce.reduce.markreset.buffer.percent

  4.数据传输

    1)数据压缩

    2)使用SequenceFile,它是二进制文件,使字节之间紧密度更高,提高效率。

  5.数据倾斜

    1)进行范围分区

    2)自定义分区

    3)Combiner

    4)能用map join坚决不用reduce join

  6.参数调优

    1)CPU

    //程序map阶段默认使用cpu核心数量:mapreduce.map.cpu.vcores

     //程序reduce阶段more使用cpu核心数量:mapreduce.reduce.cpu.vcores

    2)内存

    //一个maptask可以使用的最大内存:mapreduce.map.memory.mb

    //一个reducetask可以使用的最大内存:mapredcue.reduce.memory.mb

    3)并行度

    //reduce去map端拿数据时的并行度:mapreduce.reduce.shuffle.parallelcopies

Hadoop优化的更多相关文章

  1. 学习笔记:Twitter核心数据类库团队的Hadoop优化经验

    一.来源 Streaming Hadoop Performance Optimization at Scale, Lessons Learned at Twitter (Data platform @ ...

  2. 关注云端搜索技术:elasticsearch,nutch,hadoop,nosql,mongodb,hbase,cassandra 及Hadoop优化

    http://www.searchtech.pro/ Hadoop添加或调整的参数: 一.hadoop-env.sh1.hadoop的heapsize的设置,默认1000 # The maximum ...

  3. Hadoop优化 第一篇 : HDFS/MapReduce

    比较惭愧,博客很久(半年)没更新了.最近也自己搭了个博客,wordpress玩的还不是很熟,感兴趣的朋友可以多多交流哈!地址是:http://www.leocook.org/ 另外,我建了个QQ群:3 ...

  4. hadoop优化之拙见

    map-reduce的优化: 需要内存的地方:  map/reduce任务运行时内存.存放中间数据的内存缓存区.map输出数据排序内存, 需要操作磁盘的地方: map输出数据缓冲区达到阀值的溢出写文件 ...

  5. Hadoop(24)-Hadoop优化

    1. MapReduce 跑得慢的原因 优化方法 MapReduce优化方法主要从六个方面考虑:数据输入.Map阶段.Reduce阶段.IO传输.数据倾斜问题和常用的调优参数. 数据输入 Map阶段 ...

  6. Hadoop优化 操作系统优化

    1.优化文件系统,修改/etc/fstab 在defaults后面添加noatime,表示不记录文件的访问时间. 修改为: 如果不想重新启动操作系统使配置生效,那么应该执行: # mount -o r ...

  7. Hadoop优化之数据压缩

    bBHadoop数据压缩 概述 运行hadoop程序时,I/O操作.网络数据传输.shuffle和merge要花大量的时间,尤其是数据规模很大和工作负载密集的情况下,这个时候,使用数据压缩可以提高效率 ...

  8. [大牛翻译系列]Hadoop(16)MapReduce 性能调优:优化数据序列化

    6.4.6 优化数据序列化 如何存储和传输数据对性能有很大的影响.在这部分将介绍数据序列化的最佳实践,从Hadoop中榨出最大的性能. 压缩压缩是Hadoop优化的重要部分.通过压缩可以减少作业输出数 ...

  9. Hadoop! | 大数据百科 | 数据观 | 中国大数据产业观察_大数据门户

        你正在使用过时的浏览器,Amaze UI 暂不支持. 请 升级浏览器 以获得更好的体验! 深度好文丨读完此文,就知道Hadoop了! 来源:BiThink 时间:2016-04-12 15:1 ...

随机推荐

  1. OS + CentOS / windows / xrdp / vnc

    s 通过windows远程访问linux桌面的方法(简单) https://www.cnblogs.com/lizhangshu/p/9709531.html https://dl.fedorapro ...

  2. 标签传播算法(Label Propagation Algorithm, LPA)初探

    0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分. 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社 ...

  3. hadoop记录-hive常见设置

    分区表 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;create tabl ...

  4. Matplotlib图例

    折线图示例 #!/usr/bin/python2.7 import numpy as np from matplotlib import pyplot as plt from dbtools impo ...

  5. 使用hql动态创建对象问题

    前段时间由于需求要添加报表数据,调整ireport后,打印pdf文件出现数据错位的情况,调试发现不是ireport问题,就查看了后台传送的数据,最后发现传送的对象属性值已经就是错位的,那就是获取对象时 ...

  6. vue 点击展开显示更多 点击收起部分隐藏

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. HDU-1171 Big Event in HDU(生成函数/背包dp)

    题意 给出物品种类,物品单价,每种物品的数量,尽可能把其分成价值相等的两部分. 思路 背包的思路显然是用一半总价值当作背包容量. 生成函数则是构造形如$1+x^{w[i]}+x^{2*w[i]}+.. ...

  8. 理解 YOLO

    YOLO: 1. YOLO的网络结构 YOLO v1 network (没看懂论文上的下图,看下面这个表一目了然了) 24层的卷积层,开始用前面20层来training, 图片是224x224的,然后 ...

  9. python2x如何迁移代码到python3中

    2to3 - 自动Python 2到3代码转换 2to3是一个Python程序,它读取Python 2.x源代码并应用一系列修复程序将其转换为有效的Python 3.x代码.标准库包含一组丰富的修复程 ...

  10. SQL - for xml path('') 实现多行合并到一行, 并带有分隔符

    docs.microsoft.com 链接:  SQL一个应用场景与FOR XML PATH应用 首先呢!我们在增加一张学生表,列分别为(stuID,sName,hobby),stuID代表学生编号, ...