二分图博弈

from BZOJ 1443 游戏(二分图博弈) - free-loop - 博客园

定义

1.博弈者人数为两人,双方轮流进行决策。

2.博弈状态(对应点)可分为两类(状态空间可分为两个集合),对应二分图两边(X集和Y集)。任意合法的决策(对应边)使状态从一类跳转到另一类。(正是由于这个性质使得问题可以用二分图描述)

3.不可以转移至已访问的状态。(不可重复访问点)

4.无法转移者判负。

判定

不妨设起点在二分图的X集中,那么先手只能从X集移动到Y集,后手只能从Y集移动到X集。一次游戏过程对应一条路径 。若最后停留在X集且无法移动则先手负,停留在Y集则后手负。

考虑该二分图的某个最大匹配。(注意可能存在多个匹配相同的最大匹配)

若起点s∈X不属于该最大匹配。则先手所转移到的点y∈Y一定属于最大匹配(否则s-y是一个匹配,与最大匹配矛盾)。后手沿着最大匹配的边走即可,终点t(指无法从t再走一步)一定不可能在Y集中(否则,若t在Y集中,s-...-t为一增广路,与最大匹配矛盾)。因此先手必败,后手必胜。

若起点s∈X属于该最大匹配。则将s从图中删除,再求图的最大匹配。若最大匹配数不变,则s还是不属于某最大匹配,先手必败。否则该图的任意最大匹配都包含s,则先手沿着最大匹配的边走即可,根据上面的分析,先手必胜。

BZOJ2463-[中山市选2009]谁能赢呢?

Description

Problem 2463. -- [中山市选2009]谁能赢呢?

Solution

显然就是一个二分图...

考虑用1*2骨牌覆盖方格, 骨牌相当于一条匹配边.

n为偶数时, 骨牌恰好覆盖整个棋盘. 整个先手方沿匹配边走, 后手方只能走非匹配边. 最后后手一定无法走;

n为奇数时, 考虑除了起点外的所有点可以被骨牌覆盖, 也就是构成一个完美匹配. 后手只需沿匹配边走, 那么先手最后一定无法走.

Code

#include<iostream>
using namespace std;
int n;
int main(){
while(cin>>n,n){
cout<<((n&1)?"Bob":"Alice")<<'\n';
}
return 0;
}

[模板] 二分图博弈 && BZOJ2463:[中山市选2009]谁能赢呢?的更多相关文章

  1. bzoj千题计划169:bzoj2463: [中山市选2009]谁能赢呢?

    http://www.lydsy.com/JudgeOnline/problem.php?id=2463 n为偶数时,一定可以被若干个1*2 矩形覆盖 先手每次从矩形的一端走向另一端,后手每次走向一个 ...

  2. [bzoj2463][中山市选2009]谁能赢呢?_博弈论

    博弈论 bzoj-2463 中山市选-2009 题目大意:题目链接. 注释:略. 想法: 如果$n$是偶数的话就可以被多米诺骨牌恰好覆盖,这样的话只需要先手先走向(1,1)对应的第二段,后者必定会将棋 ...

  3. bzoj2463: [中山市选2009]谁能赢呢?(博弈论)

    2463: [中山市选2009]谁能赢呢? 题目:传送门 题解: 水体! n为偶数的话必能被1*2的矩形覆盖,那么因为一开始在左上角,所以先手一定可以先组成一个矩形,那么先手肯定必胜! n为奇数和上面 ...

  4. bzoj2463: [中山市选2009]谁能赢呢? 博弈

    小明和小红经常玩一个博弈游戏.给定一个n×n的棋盘,一个石头被放在棋盘的左上角.他们轮流移动石头.每一回合,选手只能把石头向上,下,左,右四个方向移动一格,并且要求移动到的格子之前不能被访问过.谁不能 ...

  5. BZOJ2463[中山市选2009]谁能赢呢?——博弈论

    题目描述 小明和小红经常玩一个博弈游戏.给定一个n×n的棋盘,一个石头被放在棋盘的左上角.他们轮流移动石头.每一回合,选手只能把石头向上,下,左,右四个方向移动一格,并且要求移动到的格子之前不能被访问 ...

  6. BZOJ2463: [中山市选2009]谁能赢呢?

    感慨下汉堡的找水题能力… /************************************************************** Problem: 2463 User: zhu ...

  7. 【博弈论】bzoj2463 [中山市选2009]谁能赢呢?

    ∵都是最优操作 ∴n*n=偶数时Bob赢,否则Alice赢 n*n的奇偶性等价于n的奇偶性. #include<cstdio> using namespace std; int n; in ...

  8. [日常摸鱼]bzoj2463 [中山市选2009]谁能赢呢?

    题意:两个人在$n*n$的棋盘上玩游戏,一开始棋子在左上角,可以上下左右的走到没有走过的地方,最后不能走的那个输,两个人都采取最优决策问哪个赢 猜结论!$n$为偶数则先手赢,否则后手赢. 考虑用$1* ...

  9. bzoj 2463 [中山市选2009]谁能赢呢?(博弈)

    2463: [中山市选2009]谁能赢呢? Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1290  Solved: 944[Submit][Stat ...

随机推荐

  1. 过滤器(Filter)和拦截器(Interceptor)

    过滤器(Filter) Servlet中的过滤器Filter是实现了javax.servlet.Filter接口的服务器端程序.它依赖于servlet容器,在实现上,基于函数回调,它可以对几乎所有请求 ...

  2. 【Dojo 1.x】笔记1 入门

    Dojo是个框架 ,是个js框架,现在除了这一点什么都不知道,就这么上手了. ps:不建议Web初学者看我的笔记,这个要有一定积累才能看. 在<body>标签内写这么一点代码: <b ...

  3. 美团技术沙龙01 - 58到家服务的订单调度&数据分析技术

    1. 2015.4.15 到家服务的订单调度&数据分析技术 58到家· 黄海斌 @xemoaya 2.agenda • 58到家介绍 • 订单管理系统介绍 • 数据分析技术的应用 3.2015 ...

  4. Android 修改包名,导致安装错误

    一.app运行安装时出错 [安装时出错]: [百度翻译] 安装失败的消息未能敲定会议:install_failed_invalid_apk:/数据/应用程序/ vmdl292154713.tmp/9_ ...

  5. ionic3 导航的应用(页面跳转与参数传递)

    about.html(跳转页面) <ion-content padding> <ion-list> <ion-item *ngFor="let he of co ...

  6. 前后端交互实现(nginx,json,以及datatable的问题相关)

    1.同源问题解决 首先,在同一个域下搭建网络域名访问,需要nginx软件,下载之后修改部分配置 然后再终端下cmd  nginx.exe命令,或者打开nginx.exe文件,会运行nginx一闪而过, ...

  7. ASP.NET Zero--后端应用程序

    后端应用程序 这是用户名和密码输入的实际应用程序.您将主要在此应用程序上添加您的业务需求. 应用文件夹 后端应用程序默认内置在专用区域,名为“ App ”,但可以在创建解决方案时确定.因此,所有控制器 ...

  8. python 词云学习

    词云入门 三步曲 数据获取:使用爬虫在相关网站上获取文本内容 数据清洗:按一定格式对文本数据进行清洗和提取(文本分类,贴标签) 数据呈现:多维度呈现和解读数据(计算,做表,画图) 一 模块的安装 pi ...

  9. 数据库【mysql】之pymysql

    安装模块 pip install pymysql 导入模块 import pymysql 创建链接 conn = pymysql.connect(host=') 创建索引 cursor = conn. ...

  10. IO 模型 IO 多路复用

    IO 模型 IO 多路复用 IO多路复用:模型(解决问题的方案) 同步:一个任务提交以后,等待任务执行结束,才能继续下一个任务 异步:不需要等待任务执行结束, 阻塞:IO阻塞,程序卡住了 非阻塞:不阻 ...