A  签到题

Alice, a student of grade 666, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

We denote k!k!k!:

k!=1×2×⋯×(k−1)×kk! = 1 \times 2 \times \cdots \times (k - 1) \times kk!=1×2×⋯×(k−1)×k

We denote SSS:

S=1×1!+2×2!+⋯+S = 1 \times 1! + 2 \times 2! + \cdots +S=1×1!+2×2!+⋯+
(n−1)×(n−1)! (n - 1) \times (n-1)!(n−1)×(n−1)!

Then SSS module nnn is ____________

You are given an integer nnn.

You have to calculate SSS modulo nnn.

Input

The first line contains an integer T(T≤1000)T(T \le 1000)T(T≤1000), denoting the number of test cases.

For each test case, there is a line which has an integer nnn.

It is guaranteed that 2≤n≤10182 \le n\le 10^{18}2≤n≤1018.

Output

For each test case, print an integer SSS modulo nnn.

Hint

The first test is: S=1×1!=1S = 1\times 1!= 1S=1×1!=1, and 111 modulo 222 is 111.

The second test is: S=1×1!+2×2!=5S = 1\times 1!+2 \times 2!= 5S=1×1!+2×2!=5 , and 555 modulo 333 is 222.

打个表就会发现结果等于 N-1;直接输出就是了;

F

题目链接 :https://nanti.jisuanke.com/t/30999

思路 : 欧筛 + 打表  ,水过的

#include<cstring>
#include<iostream>
#include<cstdio>
#include<ctime>
using namespace std;
#define N 20000005
#define ll long long
int vis[N];
int p[N], cnt, v[N];
ll sum[N];
void init(){
int i, j, k;
sum[]= ;
for(i = ; i < N; ++i){
sum[i] = sum[i-]+vis[i]; // sum[i] 就是答案
if (v[i]== ){
p[cnt++] = i;
}
for (j = ; j < cnt && i * p[j] < N; j++){
ll ans = p[j]*p[j];
if(i%p[j]) {vis[i*p[j]] = vis[i]*; v[i*p[j]] =;}
if(i%ans == ) {vis[i*p[j]] =; v[i*p[j]] =;break;} // 如果i含有至少两个相同的素数, 将 vis[i*p[j]] 置0;
if(i%p[j]==){vis[i*p[j]] = vis[i]/; v[i*p[j]] =;break;}
}
}
} int main()
{
vis[] = ;
for(int i = ; i < N; i++)
{
vis[i] = ;
}
init();
int t;
cin >> t;
while(t--)
{
int n;
cin >> n;
cout << sum[n] << endl;
/* for(int i = 1; i <= 300; i++)
{
cout << "vis " << i <<" : " << vis[i] << endl;
cout << "sum "<< i << " : " << sum[i] << endl; } */ }
}

大佬博客   : http://www.cnblogs.com/Dup4/p/9570883.html

ACM-ICPC 2018 南京赛区网络预赛(A, J)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  3. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  4. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  5. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  6. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  7. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  8. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

  9. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze

    262144K   There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...

  10. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

随机推荐

  1. 洛谷.5284.[十二省联考2019]字符串问题(后缀自动机 拓扑 DP)

    LOJ BZOJ 洛谷 对这题无话可说,确实比较...裸... 像dls说的拿拓扑和parent树一套就能出出来了... 另外表示BZOJ Rank1 tql... 暴力的话,由每个\(A_i\)向它 ...

  2. Django——微信消息推送

    前言 微信公众号的分类 微信消息推送 公众号 已认证公众号 服务号 已认证服务号 企业号 基于:微信认证服务号 主动推送微信消息. 前提:关注服务号 环境:沙箱环境 沙箱环境地址: https://m ...

  3. d4-01

    一.字典 1.1 var dict = {"name":"zhangsan"}  定义字典 1.2 dict.name     取得name的值 1.3 del ...

  4. CentOS7搭建SVN服务器

    首先,你得有个VPS,我用的是搬瓦工. 安装步骤如下:1.yum install subversion2.查看安装版本 svnserve --version   3.创建SVN版本库目录 mkdir ...

  5. Unity进阶----AssetBundle_01(2018/10/30)

    AssetBundle作用和定义 1).AssetBundle是一个压缩包包含模型.贴图.预制体.声音.甚至整个场景,可以在游戏运行的时候被加载: 2).AssetBundle自身保存着互相的依赖关系 ...

  6. jQuery效果------隐藏hide()/显示show()

    hide()和show() hide():隐藏文本. show():显示文本. 语法: $(selector).hide(speed,callback); $(selector).show(speed ...

  7. java.util中,util是什么意思

    Util是utiliy的缩写,是一个多功能.基于工具的包. java.util是包含集合框架.遗留的 collection 类.事件模型.日期和时间设施.国际化和各种实用工具类(字符串标记生成器.随机 ...

  8. python2和python3共存时,设置默认python为python3

    sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100 sudo update-alternati ...

  9. [Java]直播方案----[接入环信聊天室]+[腾讯云直播]

    辛辛苦苦写的,转载请注明一下,这点信任我想还是有的吧,谢谢了. http://www.cnblogs.com/applerosa/p/7162268.html 之前做了直播,一直没时间写,好不容易闲下 ...

  10. 2018-2019-2-20175303 实验二 《Java开发环境的熟悉》实验报告

    2018-2019-2-20175303 实验二 <Java开发环境的熟悉>实验报告 姓名:柴轩达       学号:20175303     班级:1753       实验课程:JAV ...