Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

Example 1:

Input: "(()"
Output: 2
Explanation: The longest valid parentheses substring is "()"

Example 2:

Input: ")()())"
Output: 4
Explanation: The longest valid parentheses substring is "()()" 大概意思就是,提供一个只含'('和')'的字符串S,请在S中找到一个'('和')'配对出现的最长连续子字符串,输出其长度这个最长连续子字符串可以是“(())”这种,也可以是“()()”这种,而且必须是连续的。
这个题的状态相对来说比较好想,状态dp[i]:包含第i个字符的最长连续子串的长度,前提是包含当前这个字符S[i](因为要保证结果是个连续的字串),所以可以想像到所有'('处的dp值都是0。这样问题就来了
状态转移方程是什么呢?考虑到'('和')'要配对,不妨两个两个的看S的字符。仔细研究所有字符串的情况可以发现,所有符合要求的无非就两种情况:(1)...().... (2)...((...))...两个两个的看S的字符,
(1)(2)中没有包含的连续的两个字符的情况不用考虑,像什么S[i]=='('和S[i-1]==')'之类的,都不用管,没用!
对于情况一,即S[i]==')'和S[i-1]=='('这种直接配对的情况,直接dp[i] = dp[i-2]+2,道理不赘述,注意数组访问不要越界
对于情况二,稍稍复杂一些,这种情况就是大的套小的,我们要查看小套的上界,也就是大套的左边是不是'(',如何访问这个大套的左侧字符呢,认真思考后可以想到dp[i-1]代表包含了S[i-1]的最长连续子串的长度,S[i]
是大套的右边界')',S[i-1]是小套的右边界')',则S[i-dp[i-1]]是小套的左边界,(当然这个dp[i-1]等于0也就不用管了没意义的),易知S[i-dp[i-1]-1]是大套的左边界,如果S[i-dp[i-1]-1]='('说明能配对,同时要注意
到dp[i-dp[i-1]-1]可能不等于0,也就是说大套的左侧可能还有符合要求的字串,如果存在的话应该连起来,所以这种情况下dp[i] = dp[i-1]+dp[i-dp[i-1]-2]+2,即小套长度+大套左侧的长度+套左右边界两个字符的长度2;
如果S[i-dp[i-1]-1]=')'说明不能配对,此时不管用了,让dp[i]保持默认值0即可。当然这种情况也要注意数组访问不能越界! 此题还有设置一个变量ans来记录最长的这个长度,因为S中可能断断续续有好几个离散的符合要求的'('和')'配对的字串,需要这个变量ans来不断筛选最优解,操作很简单,每次求出一个dp[i],就更新一次ans的值,
即:ans = ans > dp[i]?ans:dp[i] 代码如下:
 int longestValidParentheses(string s) {
int ans = ;
int slen = s.length();
if (slen <= )return ans;
int* dp = new int[slen];
for (int i = ; i < slen; i++)
dp[i] = ;
if (s[] == '('&&s[] == ')')dp[] = ;
ans = dp[];
for (int i = ; i < slen; i++){
if (s[i] == ')'){
if (s[i - ] == '(')dp[i] = dp[i - ] + ;
else{
if ((i - dp[i - ] - ) == && s[i - dp[i - ] - ] == '(')dp[i] = dp[i - ] + ;
else if ((i - dp[i - ] - ) > && s[i - dp[i - ] - ] == '(')dp[i] = dp[i - ] + dp[i - dp[i - ] - ] + ;
}
}
ans = ans > dp[i] ? ans : dp[i];
}
delete[]dp;
return ans;
}
												

动态规划——Longest Valid Parentheses的更多相关文章

  1. LeetCode之“动态规划”:Valid Parentheses && Longest Valid Parentheses

    1. Valid Parentheses 题目链接 题目要求: Given a string containing just the characters '(', ')', '{', '}', '[ ...

  2. Longest Valid Parentheses——仍然需要认真看看(动态规划)

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  3. [LeetCode] Longest Valid Parentheses 动态规划

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  4. [LeetCode] Longest Valid Parentheses 最长有效括号

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  5. 【leetcode】 Longest Valid Parentheses (hard)★

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  6. Longest Valid Parentheses 每每一看到自己的这段没通过的辛酸代码

    Longest Valid Parentheses My Submissions Question Solution  Total Accepted: 47520 Total Submissions: ...

  7. 【Longest Valid Parentheses】cpp

    题目: Given a string containing just the characters '(' and ')', find the length of the longest valid ...

  8. Longest Valid Parentheses(最长有效括号)

    Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...

  9. LeetCode32 Longest Valid Parentheses

    题目: Given a string containing just the characters '(' and ')', find the length of the longest valid ...

随机推荐

  1. PEP8中文翻译(转)

    原文:https://github.com/zgia/manual PEP 8 -- Style Guide for Python Code PEP Index > PEP 8 -- Style ...

  2. js jquery 判断元素是否在数组内(转)

    一,js方法 var arr = ["a", "b", "c"]; // js arr.indexOf("c") var ...

  3. Linux设备树(五 根节点)

    五 根节点 一个最简单的设备树必须包含根节点,cpus节点,memory节点.根节点的名字及全路径都是“/”,至少需要包含model和compatible两个属性.model属性我们在属性那节已经说过 ...

  4. function Language

    什么是函数式语言: 函数式语言(functional language)一类程序设计语言.是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型.这种语言具有较强的组织数据 ...

  5. 数据库学习之MySQL基础

    数据库基础 一.数据库简介 数据库:存放数据的仓库 sql及其规范 sql是Structured Query Language(结构化查询语言)的缩写.SQL是专为数据库而建立的操作命令集,是一种功能 ...

  6. DirectX11 With Windows SDK--09 纹理映射与采样器状态

    前言 在之前的DirectX SDK中,纹理的读取使用的是D3DX11CreateShaderResourceViewFromFile函数,现在在Windows SDK中已经没有这些函数,我们需要找到 ...

  7. oldboy s21day13装饰器和推导式

    #!/usr/bin/env python# -*- coding:utf-8 -*- # 2.请为 func 函数编写一个装饰器,添加上装饰器后可以实现:执行func时,先输入"befor ...

  8. [再寄小读者之数学篇](2014-06-23 Gronwall-type inequality)

    Suppose that $$\bex \cfrac{\rd f}{\rd t}+h\leq gf\quad (f,g,h\geq 0,\ t\in [0,T]). \eex$$ Then for $ ...

  9. EffectiveC++ 第2章 构造/析构/赋值运算

    我根据自己的理解,对原文的精华部分进行了提炼,并在一些难以理解的地方加上了自己的"可能比较准确"的「翻译」. Chapter 2 构造 / 析构 / 赋值 条款 05:了解C++ ...

  10. EffectiveC++ 第7章 模板与泛型编程

    我根据自己的理解,对原文的精华部分进行了提炼,并在一些难以理解的地方加上了自己的"可能比较准确"的「翻译」. Chapter 7 模版与泛型编程 Templates and Gen ...