题目:这里

题意:

Description

  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。

Input

  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)

Output

  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000

我是看了强连通入门(讲的很清楚):http://www.2cto.com/kf/201606/517227.html

Kosaraju算法第一次dfs1将所有的点按拓扑排序逆序存进栈,第二次dfs2(此时是逆着方向回去搜)将整个图分成若干个强连通分量,。

对于这个题,可以观察出最后受到所有牛的欢迎的牛必定是在其中一个强连通分量里面的,所以看哪个强连通分量是其余所有变量都能达到的,也就等同于缩点后的

新图里面哪个的出度为0,如果出度为0的分量只有一个,那么该分量其中点的个数就是答案,如果出度为0的分量个数超过一个,那么没有答案,输出为0.

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<cmath>
using namespace std; const int M = 1e5 + ;
vector<int>q;
int sccno[M],sum[M],du[M],scc_cnt; struct Edge{
int to,next,from,odr;
}edge[M*];
int head1[M],head2[M],cas;
bool vis[M]; void add(int u,int v)
{
edge[++cas].next=head1[u];
edge[cas].odr=head2[v];
edge[cas].to=v;edge[cas].from=u;
head1[u]=cas;head2[v]=cas;
} void dfs1(int u)
{
for (int i=head1[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (vis[v]) continue;
vis[v]=true;
dfs1(v);
q.push_back(v);
}
} void dfs2(int u)
{
sccno[u]=scc_cnt;
sum[scc_cnt]++;
for (int i=head2[u] ; i ; i=edge[i].odr){
int v=edge[i].from;
if (sccno[v]) continue;
dfs2(v);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
scc_cnt=;cas=;
q.clear();
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(vis,false,sizeof(vis));
memset(sum,,sizeof(sum));
memset(du,,sizeof(du));
for (int i= ; i<=n ; i++)
if (vis[i]==false){
vis[i]=true;dfs1(i);
q.push_back(i);
} for (int i=n- ; i>= ; i--){
if (!sccno[q[i]]){
scc_cnt++;
// cout<<q[i]<<endl;
dfs2(q[i]);
}
} for (int i= ; i<=cas ; i++){
int x=sccno[edge[i].from],y=sccno[edge[i].to];
if (x==y) continue;
du[x]++;
}
int flag=-,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

Tarjan算法链接也就讲的很清楚了

 #include<cstdio>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std; const int M = 1e5 + ;
int head[M],cas,scc_cnt,dfs_clock;
int sccno[M],du[M],sum[M],lowlink[M],pre[M];
stack<int>s; int min(int x,int y){return x<y?x:y;} struct Edge{
int to,next,from;
}edge[M*]; void add(int u,int v)
{
edge[++cas].next=head[u];
edge[cas].to=v;edge[cas].from=u;
head[u]=cas;
} void dfs(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
s.push(u);
for (int i=head[u] ; i ; i=edge[i].next){
int v=edge[i].to;
if (!pre[v]){
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if (!sccno[v]){
lowlink[u]=min(lowlink[u],pre[v]);
}
}
if (lowlink[u]==pre[u]){
scc_cnt++;
for ( ; ; ){
int x=s.top();s.pop();
sccno[x]=scc_cnt;
if (x==u) break;
}
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
cas=,dfs_clock=,scc_cnt=;
while (m--){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
memset(pre,,sizeof(pre));
memset(lowlink,,sizeof(lowlink));
memset(du,,sizeof(du));
memset(sum,,sizeof(sum));
for (int i= ; i<=n ; i++)
if (!pre[i]) dfs(i);
for (int i= ; i<=n ; i++)
sum[sccno[i]]++;
for (int i= ; i<=cas ; i++){
int u=sccno[edge[i].from],v=sccno[edge[i].to];
if (u==v) continue;
du[u]++;
}
int flag=,ans;
for (int i= ; i<=scc_cnt ; i++)
if (!du[i]) flag++,ans=sum[i];
if (flag==) printf("%d\n",ans);
else puts("");
return ;
}

bzoj 1051 (强连通) 受欢迎的牛的更多相关文章

  1. BZOJ 1051: [HAOI2006]受欢迎的牛( tarjan )

    tarjan缩点后, 有且仅有一个出度为0的强连通分量即answer, 否则无解 ----------------------------------------------------------- ...

  2. BZOJ 1051: [HAOI2006]受欢迎的牛(SCC)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 8172  Solved: 4470[Submit][Sta ...

  3. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  4. BZOJ 1051: [HAOI2006]受欢迎的牛 缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  5. bzoj 1051: [HAOI2006]受欢迎的牛 tarjan缩点

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2092  Solved: 1096[Submit][Sta ...

  6. BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问 ...

  7. 洛谷 P2341 BZOJ 1051 [HAOI2006]受欢迎的牛

    题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...

  8. BZOJ 1051: [HAOI2006]受欢迎的牛

    Description 一个有向图,求所以能被别的点到达的点的个数. Sol Tarjan + 强连通分量 + 缩点. 缩点以后找强连通分量,缩点,然后当图有且仅有1个出度为1的点时,有答案. Cod ...

  9. bzoj 1051 [HAOI2006]受欢迎的牛(tarjan缩点)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1051 题解:缩点之后判断出度为0的有几个,只有一个那么输出那个强连通块的点数,否者 ...

随机推荐

  1. 读艾伦的jQuery的无new构建,疑惑分析——jquery源码学习一

    背景: 有心学习jquery源码,苦于自己水平有限,若自己研究,耗时耗力,且读懂之日无期. 所以,网上寻找高手的源码分析.再经过自己思考,整理,验证.以求有所收获. 此篇为读高手艾伦<jQuer ...

  2. 织梦系统“当前位置”{dede:field.position}的修改方法

    dedecms中修改当前位置{dede:field.position},就是只要首页>一级栏目>二级栏目这样.找到include/typelink.class.php,找到这个文件里的这个 ...

  3. UIDynamicAnimator UIKit动力学

    也许是工作上并没有这方面的需要,对UIDynamicAnimator的了解不多.这里做简单的介绍: UIKit动力学是模拟真实世界的一些特性,主要就是UIDynamicAnimator类,通过类中的不 ...

  4. DIV+CSS:Margin和Padding属性[转载]

    margin和padding用来隔开元素,margin是隔开元素与外边,padding是隔开元素里边. margin: 包括margin-top.margin-right.margin-bottom. ...

  5. 64位系统如何导入excel

    1.运行C:\Windows\SysWOW64\odbcad32.exe,打开后如下图所示: 2.点击添加,选择如下图所示Microsoft Excel Driver(*.xls) 3.点击完成,在弹 ...

  6. SQL Server复制情况下的高可用方案(一)镜像+复制

    数据库镜像可以与事务复制一起使用实现数据库整体的高可用性和高性能,其中镜像可以提供故障检测和故障转移,复制则用于实现读写分离. 数据库镜像涉及一个数据库的两个副本,这两个副本通常驻留在不同的计算机上. ...

  7. MSSQL sp_helptextplus

    默认的sp_helptext 如果存储过程每行代码太长会自动截断 把这个sp_helptextplus添加到SSMS的keyboard快捷键里面 SET QUOTED_IDENTIFIER ON SE ...

  8. Java代理(jdk静态代理、动态代理和cglib动态代理)

    一.代理是Java常用的设计模式,代理类通过调用被代理类的相关方法,并对相关方法进行增强.加入一些非业务性代码,比如事务.日志.报警发邮件等操作. 二.jdk静态代理 1.业务接口 /** * 业务接 ...

  9. docker在ubuntu14.04下的安装笔记

    本文主要是参考官网教程进行ubuntu14.04的安装. 下面是我的安装笔记. 笔记原件完整下载: 链接: https://pan.baidu.com/s/1dEPQ8mP 密码: gq2p

  10. C#开发微信公众平台(附Demo)

    服务号和订阅号 服务号是公司申请的微信公共账号,订阅号是个人申请的,我个人也申请了一个,不过没怎么用. 服务号 1个月(30天)内仅可以发送1条群发消息. 发给订阅用户(粉丝)的消息,会显示在对方的聊 ...