UVA 11297 线段树套线段树(二维线段树)
题目大意:
就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询
二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的线段树总是在自身的叶子处不能直接更新数据,而是要以一维下他的左右孩子对应的位置数据进行更新。
#include <bits/stdc++.h>
using namespace std;
#define N 505
#define ls o<<1
#define rs o<<1|1
#define def_m int m=(l+r)>>1
const int INF = 0x7fffffff;
int n , q , mx[N*][N*] , mn[N*][N*] , ansmx,ansmn,a[N][N];
void update1D(int o , int l , int r , int y , int ox , int v,int flag)
{
if(l==r){
if(!flag)mx[ox][o] = mn[ox][o] = v;
else{mx[ox][o] = max(mx[ox<<][o],mx[ox<<|][o]) ; mn[ox][o] = min(mn[ox<<][o],mn[ox<<|][o]);}
return ;
}
def_m;
if(m>=y) update1D(ls,l,m,y,ox,v,flag);
else update1D(rs,m+,r,y,ox,v,flag);
mx[ox][o] = max(mx[ox][ls] , mx[ox][rs]);
mn[ox][o] = min(mn[ox][ls] , mn[ox][rs]);
// cout<<ox<<" "<<o<<" "<<l<<" "<<r<<" "<<y<<" "<<v<<endl;
}
void update2D(int o , int l , int r , int x , int y , int v)
{
// cout<<"v: "<<v<<endl;
if(l==r){
update1D(,,n,y,o,v,);
return ;
}
def_m;
if(m>=x) update2D(ls,l,m,x,y,v);
else update2D(rs,m+,r,x,y,v);
update1D(,,n,y,o,v,);
}
void query1D(int o , int l , int r , int s , int t , int ox)
{
if(l>=s&&r<=t){
ansmx=max(ansmx,mx[ox][o]);
// cout<<"in query: "<<ox<<" "<<o<<" "<<s<<" "<<t<<" "<<mx[ox][o]<<" "<<mn[ox][o]<<endl;
ansmn=min(ansmn,mn[ox][o]);
return ;
}
def_m;
if(m>=s) query1D(ls,l,m,s,t,ox);
if(m<t) query1D(rs,m+,r,s,t,ox);
}
void query2D(int o,int l,int r,int sx,int tx,int sy,int ty)
{
if(l>=sx&&r<=tx){
query1D(,,n,sy,ty,o);
return ;
}
def_m;
if(m>=sx) query2D(ls,l,m,sx,tx,sy,ty);
if(m<tx) query2D(rs,m+,r,sx,tx,sy,ty);
}
void build1D(int o , int l , int r , int ox , int x)
{
if(l==r){
if(x>=) mx[ox][o] = mn[ox][o] = a[x][l];
else mx[ox][o] = max(mx[ox<<][o] , mx[ox<<|][o]) , mn[ox][o] = min(mn[ox<<][o] , mn[ox<<|][o]);
return ;
}
def_m;
build1D(ls , l , m , ox , x);
build1D(rs , m+ , r , ox , x);
mx[ox][o] = max(mx[ox][ls] , mx[ox][rs]);
mn[ox][o] = min(mn[ox][ls] , mn[ox][rs]);
}
void build2D(int o , int l , int r , int ly , int ry)
{
if(l==r){
build1D(,,n,o,l);
return ;
}
def_m;
build2D(ls , l , m , ly , ry);
build2D(rs , m+ , r , ly , ry);
build1D( , , n , o , -);
}
int main()
{
// freopen("a.in" , "r" , stdin);
while(~scanf("%d" , &n)){
memset(mx , 0x80 , sizeof(mx));
memset(mn , 0x7f , sizeof(mn));
for(int i= ; i<=n ; i++)
for(int j= ; j<=n ; j++)scanf("%d" , &a[i][j]); build2D(,,n,,n); scanf("%d" , &q);
for(int i= ; i<q ; i++){
char op[];
scanf("%s" , op);
if(op[]=='q'){
int x1,y1,x2,y2;
scanf("%d%d%d%d" , &x1,&y1,&x2,&y2);
ansmx = -INF , ansmn=INF;
query2D(,,n,x1,x2,y1,y2);
printf("%d %d\n" , ansmx,ansmn);
}
else{
int x,y,v;
scanf("%d%d%d" , &x,&y,&v);
update2D(,,n,x,y,v);
}
}
}
return ;
}
UVA 11297 线段树套线段树(二维线段树)的更多相关文章
- 「ZJOI2017」树状数组(二维线段树)
「ZJOI2017」树状数组(二维线段树) 吉老师的题目真是难想... 代码中求的是 \(\sum_{i=l-1}^{r-1}a_i\),而实际求的是 \(\sum_{i=l}^{r}a_i\),所以 ...
- [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)
4785: [Zjoi2017]树状数组 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 297 Solved: 195[Submit][Status ...
- BZOJ4785 [Zjoi2017]树状数组 【二维线段树 + 标记永久化】
题目链接 BZOJ4785 题解 肝了一个下午QAQ没写过二维线段树还是很难受 首先题目中的树状数组实际维护的是后缀和,这一点凭分析或经验或手模观察可以得出 在\(\mod 2\)意义下,我们实际求出 ...
- P3688 [ZJOI2017] 树状数组 【二维线段树】
题目描述:这里有一个写挂的树状数组: 有两种共\(m\)个操作: 输入\(l,r\),在\([l,r]\)中随机选择一个整数\(x\)执行\(\text{Add}(x)\) 输入\(l,r\),询问执 ...
- 洛谷 P3688 - [ZJOI2017]树状数组(二维线段树+标记永久化)
题面传送门 首先学过树状数组的应该都知道,将树状数组方向写反等价于前缀和 \(\to\) 后缀和,因此题目中伪代码的区间求和实质上是 \(sum[l-1...n]-sum[r...n]=sum[l-1 ...
- hdu1823(二维线段树模板题)
hdu1823 题意 单点更新,求二维区间最值. 分析 二维线段树模板题. 二维线段树实际上就是树套树,即每个结点都要再建一颗线段树,维护对应的信息. 一般一维线段树是切割某一可变区间直到满足所要查询 ...
- 【BZOJ1513】[POI2006]Tet-Tetris 3D 二维线段树
[BZOJ1513][POI2006]Tet-Tetris 3D Description Task: Tetris 3D "Tetris" 游戏的作者决定做一个新的游戏, 一个三维 ...
- UVa 11297 Census (二维线段树)
题意:给定上一个二维矩阵,有两种操作 第一种是修改 c x y val 把(x, y) 改成 val 第二种是查询 q x1 y1 x2 y2 查询这个矩形内的最大值和最小值. 析:二维线段树裸板. ...
- UVA 11297 Census(二维线段树)
Description This year, there have been many problems with population calculations, since in some cit ...
随机推荐
- 什么是js和js的基本语法
时间:2016年12月15日 先讲讲基础语法: 大部分是来操作表单: js动态效果和数据交互(ajax?) js也有自己的API js大部分的DOM操作都是针对input的. 案例学习,对注册页面的简 ...
- android studio 控制台中文乱码
解决办法,在java工程目录下的build.gradle添加如下代码,然后重新运行一遍. tasks.withType(JavaCompile) { options.encoding = " ...
- kali4.0 下tftpd-hpa服务无法启动的解决方案
一.前情提要: OS:Kali4.0 64bit 使用以下命令启动tftpd-hpa服务失败: sudo /etc/init.d/tftpd-hpa 二.解决方案: 1.输入以下命令: sudo in ...
- Javascript中的字典和散列
function Dictionary() { var items={}; this.set=function (key,value) { items[key]=value; }; this.remo ...
- Evolutionary Computing: 5. Evolutionary Strategies(2)
Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...
- VB调用sendinput API
http://files.cnblogs.com/files/liuzhaoyzz/VB%E8%B0%83%E7%94%A8sendinput_API.rar sendinput只支持发送字符或者组合 ...
- neatbean 8+版本 配置
//更改代码行距 打开C:\Users\{yourname}\AppData\Roaming\NetBeans\7.3.1\config\Editors\Preferences,用文本编辑器打开 or ...
- C# 6.0 Feature list
Feature Example C# VB Auto-property initializers public int X { get; set; } = x; Added Exists Getter ...
- examine self thrice a day2017
1.6.2017 葰γí千萬丆γáò絠ィ壬菏鰯嚸,銣惈絠,倁噵ㄖㄅ者β淂簳掉.千澫丕楆被莂亽抓ィ主鰯點,以佌襲撃.那個記駐,吢軟劊嗐死尓垍己ㄖㄅ.絠仒槇可笑,鯟覀者βる誐手裏魢泾吺有談半リ的籌碼,還茬 ...
- 正则表达式入门(六)匹配unicode和其他字符
匹配unicode字符有时候我们需要匹配ASCII范围之外的字符. "Qu'est-ce que la tolérance? c'est l'apanage de l'humanité. N ...