题目链接

http://poj.org/problem?id=1141

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence. 
2. If S is a regular sequence, then (S) and [S] are both regular sequences. 
3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

 
 
题意:给了一个括号序列(只有"("  ")"  "["  "]") 现在让添加括号,使括号序列变得匹配,要求添加最少的括号,输出这个匹配的括号序列;
 
思路:区间DP,dp[i][j]表示区间i~j匹配添加括号后区间最小长度,dp[i][j]=dp[i][k]+dp[k+1][j] ,注意当s[i]=='('&&s[j]==')' || s[i]=='['&&s[j]==']' 时,特判一下dp[i][j]=min(dp[i][j],dp[i+1][j-1]+2);  这样可以找出匹配后的序列最小长度,但是题目要求输出匹配的序列,那么可以在定义一个数组v[i][j] 标记i~j区间的断开位置,如果s[i]=='('&&s[j]==')' || s[i]=='['&&s[j]==']' 时 v[i][j]==-1, 然后在递归调用输出即可;
 
代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int inf=0x3f3f3f3f;
char s[];
int v[][];
int dp[][]; void print(int l,int r)
{
if(r<l) return;
if(l==r)
{
if(s[l]=='('||s[l]==')')
printf("()");
else
printf("[]");
return;
}
if(v[l][r]==-)
{
if(s[l]=='(')
{
printf("(");
print(l+,r-);
printf(")");
}
else
{
printf("[");
print(l+,r-);
printf("]");
}
}
else
{
print(l,v[l][r]);
print(v[l][r]+,r);
}
} int main()
{
scanf("%s",s);
int len=strlen(s);
memset(dp,,sizeof(dp));
for(int i=; i<len; i++)
dp[i][i]=; for(int l=; l<len; l++)
{
for(int i=; i+l<len; i++)
{
dp[i][i+l]=inf;
for(int k=i; k<i+l; k++)
{
if(dp[i][i+l]>dp[i][k]+dp[k+][i+l])
{
dp[i][i+l]=dp[i][k]+dp[k+][i+l];
v[i][i+l]=k;
}
}
if(s[i]=='('&&s[i+l]==')'||s[i]=='['&&s[i+l]==']')
{
if(dp[i][i+l]>dp[i+][i+l-]+)
{
dp[i][i+l]=dp[i+][i+l-]+;
v[i][i+l]=-;
}
}
}
}
print(,len-);
printf("\n");
return ;
}

HDU 1141---Brackets Sequence(区间DP)的更多相关文章

  1. POJ 1141 Brackets Sequence(区间DP, DP打印路径)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  2. poj 1141 Brackets Sequence 区间dp,分块记录

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 101 ...

  3. poj 1141 Brackets Sequence (区间dp)

    题目链接:http://poj.org/problem?id=1141 题解:求已知子串最短的括号完备的全序列 代码: #include<iostream> #include<cst ...

  4. poj 1141 Brackets Sequence ( 区间dp+输出方案 )

    http://blog.csdn.net/cc_again/article/details/10169643 http://blog.csdn.net/lijiecsu/article/details ...

  5. UVA 1626 Brackets sequence 区间DP

    题意:给定一个括号序列,将它变成匹配的括号序列,可能多种答案任意输出一组即可.注意:输入可能是空串. 思路:D[i][j]表示区间[i, j]至少需要匹配的括号数,转移方程D[i][j] = min( ...

  6. Ural 1183 Brackets Sequence(区间DP+记忆化搜索)

    题目地址:Ural 1183 最终把这题给A了.. .拖拉了好长时间,.. 自己想还是想不出来,正好紫书上有这题. d[i][j]为输入序列从下标i到下标j最少须要加多少括号才干成为合法序列.0< ...

  7. 区间DP POJ 1141 Brackets Sequence

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 29520   Accepted: 840 ...

  8. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...

  9. POJ 题目1141 Brackets Sequence(区间DP记录路径)

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27793   Accepted: 788 ...

  10. ZOJ1463:Brackets Sequence(间隙DP)

    Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...

随机推荐

  1. EF架构~关于多对多关系表无法更新与插入的问题

    回到目录 在EF里,我们设计模型时,会设计到多对多关系,在EF里会把这种关系会转成两个一对多的关系表,这是比较友好的,因为多对多来说,对于业务本身没什么意思,所以隐藏了,没什么坏处,但对于这个隐藏来说 ...

  2. PHP数据库操作:使用ORM

    之前我发了一篇博文PHP数据库操作:从MySQL原生API到PDO,向大家展示PHP是如何使用MySQL原生API.MySQLi面向过程.MySQLi面向对象.PDO操作MySQL数据库的.本文介绍如 ...

  3. Java程序员的日常 —— 《编程思想》持有对象

    集合框架可以说是Java里面必备的知识点了,日常的使用中也会遇到各种情况需要使用到集合.下面就简单介绍下各种集合的使用场景: List List可以看做是数组,实现的方式有两种: ArrayList ...

  4. C#学习系列-String与string的区别

    参考:http://www.microsoftvirtualacademy.com/Content/ViewContent.aspx?et=9851&m=9832&ct=31042 如 ...

  5. ToString()的各种用法(大全)

    常用例子: string str = ""; str = .ToString("N"); //生成 12,3456.00 str = .ToString(&qu ...

  6. html学习记录之表格、表单基础

    ①编码:charset="utf-8": ​②描述及关键词:name="description":name="keywords": ③a标签 ...

  7. Python - 001 - 类与实例间属性的理解

    Python是个很灵活的语言,光看它的类和实例间属性的访问机制就可以看出这一点,不过这一点还真的不好理解,做了些测试之后我的理解是这样的: 实例在访问class属性时,先检索自己的names, 如果有 ...

  8. 【.NET深呼吸】INotifyPropertyChanged接口的真故事

    无论是在流氓腾的问问社区,还是在黑度贴吧,或是“厕所等你”论坛上,曾经看到过不少朋友讨论INotifyPropertyChanged接口.不少朋友认为该接口是为双向绑定而使用的,那么,真实的情况是这样 ...

  9. Angular从0到1:function(上)

    1.前言 Angular作为最流行的前端MV*框架,在WEB开发中占据了重要的地位.接下来,我们就一步一步从官方api结合实践过程,来学习一下这个强大的框架吧. Note:每个function描述标题 ...

  10. 开发笔记:用Owin Host实现脱离IIS跑Web API单元测试

    今天在开发一个ASP.NET Web API项目写单元测试时,实在无法忍受之前的笨方法,决定改过自新. 之前Web API的单元测试需要进行以下的操作: 初始配置: 1)在IIS中创建一个站点指定We ...